版本号: Release7.1.0

第一章 集成界面升版说明	1
1.1 优化和改进集成界面	1
第二章 平台建模	3
2.1 集成界面【新建】工程进行路径层级以及特殊字符的判断	3
2.2 构件布置菜单栏增加左右箭头按钮,可以单击将未显示全的菜单显示出来	3
2.3 导出 IFC 支持悬挑板的导出	3
2.4 增加【导入 GFC】功能	3
2.5 优化调改软件右下侧的界面视觉比例控制器时的构件以及荷载列表框的适配	4
2.6 优化高分辨率屏幕的软件适配	4
2.7 优化调改系统缩放比例时的软件适配	4
第三章 前处理及计算	5
3.1 结构设计,增加"非线性施工模拟"功能	5
3.2 结构设计,增加"计算地震位移时不考虑周期折减系数"选项	.11
3.3 结构设计,增加"加速度限值"选项	.12
3.4 设置菜单,增加配筋简图显示轴压比的控制选项	. 13
3.5 高级选项,增加"楼梯自重自动考虑踏步"	.13
3.6 整体计算书,增加板、梁的挠度、裂缝简图	.13
3.7 整体计算书,增加罕遇地震作用的位移角输出	.14
3.8 上部结构修改影响到计算及设计结果	.14
3.8.1 优化加腋梁在变截面位置的高度判断	14
3.8.2 优化与错层梁相连的柱的计算长度的判断	14
3.8.3 修正个别情况下填充墙的刚度的计算	14
第四章 混凝土施工图	.15
4.1 板施工图	. 15
4.1.1 楼板施工图中新增挠度选筋功能	15
4.1.2 计算简图中墙支座处计算结果文字显示避让墙线	15
4.2 梁施工图	.16
4.2.1 优化梁施工图"选筋方案"定义的使用逻辑	16
4.3 柱施工图	.16
4.3.1 双击编辑修改模式下,箍筋选筋方案区分节点核心区及非节点核心区	16
4.3.2 双击修改异形柱纵筋时,选筋方案可区分固定筋与分布筋	17
4.4 墙施工图	.17
4.4.1 增加参数控制用来判断 YBZ 使用的墙肢轴压比的取值原则	17
4.4.2 对于墙柱箍筋结果受墙身抗剪水平筋控制的构件输出校核信息	19

4.5 其他	19
4.5.1 模板图截面尺寸标注支持型钢截面	
4.5.2 模板图截面尺寸标注支持按柱设计的斜杆支撑	
第五章 基础	
5.1 基础建模	20
5.1.1 独基和承台增加按构件设置混凝土和钢筋材料等级的功能	
5.1.2 基础构件批量转换扩充承台转筏板、加厚区、柱墩的功能	
5.1.3 地基梁、拉梁荷载布置支持自定义工况	
5.1.4 地基梁、拉梁尺寸支持双击文字修改	
5.1.5 增加自动读取接基础楼层功能	
5.2 基础计算、设计、结果输出	
5.2.1 地基梁设计增加与承台相交处截面内力设计	
5.2.2 拉梁配筋简图按"左-中-右"三段式显示	
5.2.3 桩抗拔承载力验算中, 桩自重计算考虑水浮力	
5.2.4 桩考虑负摩阻力时,单桩也按 1.2Ra 进行验算	
5.2.5 局部抗浮稳定系数计算时, 桩拔力计入抗浮力统计; 并调整抗	 麦承载力利用系数
参数默认值	
5.2.6 改进整体抗浮稳定性验算输出	
5.2.7 柱墙冲切和柱墩冲切新增冲切结果列表,并通过双击实现构件	快速定位32
5.2.8 板块交接处增加按板块合并后的轮廓验算柱墙或柱墩对筏板冲	切 33
5.2.9 基础设计新增 HRB600(STD)等多种钢筋等级	
5.3 基础施工图	
5.3.1 三桩承台配筋表增加同原位标注一样的每侧钢筋总根数	
5.3.2 条基板分布筋规格新增参数控制	
5.3.3 桩配筋图过滤不进行配筋的桩	
5.3.4 承台配筋修改对话框如顶部配筋为0层时,顶部配筋规格控件	变灰不可编辑36
5.4 地质资料	
5.4.1 岩石单轴抗压明确单位和默认数值	
第六章 钢结构施工图	
6.1 半面图中标注坡梁标高差	
6.2 半面图中取消标注支撑构件编号	
6.3 针对箱型柱的梁柱节点识别改进	
6.4 针对柱脚极限承载力的抗震连接系数	
6.5 梁柱节点域的屈服承载力折减系数	
6.6 针对圆管支撑增加螺栓连接新节点	
第七章 减震隔震	41
7.1 支持北京隔震地标超强系数	
7.2 摩擦摆隔震支座增加产品库	

第八章 动力弹塑性(EP)	
8.1 滞回曲线中的减震元件最大内力表支持多工况	43
8.2 弹塑性计算参数开放模态分析是否考虑竖向振型参数	43
第九章 弹性时程	45
9.1 地震波选择中的设防水准自动和模型选择联动	45
9.2 弹性时程开放选波剪力对比的楼层号	46
第十章 鉴定加固	
10.1 安全性鉴定时,增加参数控制砼构件构造按非抗震进行鉴定	
10.2 高级参数增加不输出构件抗震承载力鉴定内容参数	
10.3 建模工作树扩充一键衬图的加固设计简图类型	49
10.4 原有钢筋简图屏蔽新增构件钢筋显示	
10.5 砌体强度交互简图增加存图机制	51
第十一章 欧美规范	
11.1 整体计算书,增加钢梁的挠度限值设置、墙的反力输出	
第十二章 水池软件	53
12.1 增加基础构件的查找功能	53
12.2 优化柱墙探伸功能,柱墙探伸时不识别筏板内的构件,且将图	标改置于基础布置菜单
12.3 增加【只配筋】设计选项	54
12.4 分项系数增加【详细设置】,支持各类工况系数单独设置	
12.5"分项系数"中增加"选择水池类型"按钮	60
12.6Word 计算中增加整体模型插图	
12.7 在基床系数等对话框中增加必要提示	
12.8 同步了水池软件和主程序的菜单	63
12.9 池壁施工图中改筋后自动校审计算值及裂缝,校审后不满足显	示感叹号65
12.10 优化池壁裂缝信息展示,立面裂缝值支持钢筋修改,并与钢管	筋修改结果联动66
第十三章 风机基础设计软件	70
13.1 建模配筋新增并优化了多项实用功能	
13.1.1 悬挑板径向钢筋规格设置支持两种直径隔一布一,并且	支持并筋形式
13.1.2 优化自动选筋功能,增加自定义选筋库,可精确控制选	筋规格71
13.1.3 增加实配面积和计算面积实时显示	
13.2 建模	74
13.2.1 提供专用菜单进行工程量统计	
13.2.2 增加锚索位置示意图、基坑开挖示意图	
13.2.3 增加方格网间接钢筋中心线与塔筒槽中心线对齐功能	
13.2.4 增加方格网间接钢筋布置厚度自动调整功能	
13.2.5 增加常用钢绞线公称直径和面积自动填写功能	
13.2.6 增加根据《海上风电场工程风电机组基础设计规范》进	行高强灌浆料强度定义
 13.1.3 增加实配面积和计算面积实时显示 13.2 建模 13.2.1 提供专用菜单进行工程量统计	74

13.3 计算	
13.3.1 牛腿增加按《水工混凝土结构设计规范》进行设计	
13.3.2 局压验算时考虑结构重要性系数	
13.3.3 局压验算时锚板采用净抵抗矩计算	
13.3.4 增加超限信息文本输出	
13.3.5 优化有限元配筋下对话框简图显示名称	
13.4 施工图	81
13.4.1 新增钢筋三维显示功能	
13.4.2 基础施工图增加读取参数提示	
13.4.3 完善绘图细节	
第十四章 钢制储罐地基基础设计软件	85
14.1 基础布置增加桩刚性角校核功能	85
14.2 基础构件删除增加对独基、承台的支持	
14.3 增加基础的构件查找功能	
14.4 增加对地基梁下布置桩的支持	
14.5 地基梁梁墙划分协调	
14.6 支持卧式设备基础的支墩设计结果查看	
第十五章 石化设备基础设计软件	90
15.1 支持地质资料的输入功能	90
15.2 增加基础的构件查找功能	
15.3 石化单塔计算完毕后,若计算未通过,给出底板尺寸建议值	
15.4 支持三种石化基础的沉降计算	
15.5 调整石化塔径环向配筋及正交配筋的布置区域,增加锚固长度及搭接	长度的数据描述
1关计算	
15.6 单塔基础支持建立多边形底板	
第十六章 地铁	
16.1 平台建模	
16.1.1 增加快速删除地连墙功能	
16.2 设计结果	
16.2.1 完善剖面结果存在的问题	
第十七章 基坑支护设计软件	
17.1 平台建模	
17.1.1 增加型钢水泥土墙的示意	
17.2 设计结果	
17.2.1 完善锚杆极限抗拔承载力标准值 Rk 计算	
17.2.2 配筋简图输出钢构件的应力比	
17.2.3 优化荷载剖面简图输出	

第十八章 石化建筑物抗爆设计软件	116
18.1 前处理及计算	116
18.1.1 配筋信息中默认的墙分布筋配筋率调整	116
18.1.2 设计结果中柱截面纵向钢筋的最小总配筋率调整	116
18.2 抗爆设计	118
18.2.1 读取的抗爆墙实配钢筋满足墙最小分布筋配筋率要求	118
18.2.2 数值积分法调整两端铰接时 KLm 的计算	119
第十九章 二维门刚设计软件	
19.1 建模导入 CAD 图纸功能改进	
19.2 平移节点支持尺寸按水平段输入程序自动算坡长	
19.3 纵向榀参数化建模支持双片支撑形式	
19.4 针对竖向构件柱或支撑增加垂直于杆件方向的荷载	
19.5 程序自动确定非标准体型的风荷载	
19.6 针对单层门刚柱底刚接时,柱长系数自动按钢标计算	121
19.7 门刚柱长系数判断摇摆柱和中间柱属性改进梁跨取值	
19.8 勾选二阶效应时柱长系数自动执行门刚规范附录 A.0.7	
19.9 活荷载质量改进	
19.10 设计结果-荷载简图增加吊车荷载布置图	
19.11 增加防火验算整体计算书	
19.12 整体计算书输出增加构件设计结果汇总等	
19.13 钢结构工具箱吊车梁	
第二十章 二维重钢厂房设计软件	
20.1 整体计算书增加多项内容输出	126
20.2 设计结果增加防火计算书	
20.3 施工图-格构式柱脚节点增加新类型	
20.4 施工图-格构式柱肩梁节点增加新类型	129
20.5 施工图-格构式柱牛腿节点增加新类型	129
第二十一章 三维门刚设计软件	
21.1 增加立面复制功能	131
21.2 增加偏心对齐功能	131
21.3 建模模块吊车梁增加计算功能	131
21.4 门刚风荷载增加调整系数交互修改	
第二十二章 光伏支架设计软件	
22.1 模型荷载输入模块增加自定义荷载菜单	133
22.2 刚性支架参数针对横向地坪坡度放大到 75 度	133
22.3 针对任意布置的索杆件,增加光伏属性	
22.4 针对单桩双立柱增加桩顶布置横杆和斜杆	134
22.5 双面光伏参数化布置	134

第二十三章 变电构架设计软件	
23.1 基础模块自动勾选读取 YJK-A 荷载组合	
第二十四章 部分包覆钢-混凝土组合框架结构设计软件	
24.1 部分包覆钢-混凝土组合框架结构设计软件	
第二十五章 协同工具	
25.1 自动判断梁尺寸标注规则	
25.2 可将识别到的各类构件编号,作为属性传递给模型	
25.3 增加对平面图上标高的自动识别	

第一章 集成界面升版说明

1.1 优化和改进集成界面

在 7.0 的基础上,我们对界面交互和使用体验进行优化:

- 1、优化界面文字大小,看起来更清晰;
- 2、新增集成界面中英文切换功能;

3 我的产品(29)		简体中文	
• 结构设计软件	盈建科结构设计软件 (YJKS)	English	登录 云授权/云盘账号
 结构设计软件 (美… 	本软件是为多、高层建筑结构计算分析而研制的空间组合结构有限元分析与设计软件,适用于各 初码+ 4778 - 4716 - 第十時 - 每459.0英	有限的现在 体型的多、含的影响	and the second
 结构设计软件 (欧… 			
 站构设计软件(港···· V-Paco碰脚性分析···· 	最近打开 ●新建 □打开 ▷运行 国工程打包	標块: 標型荷整输入 ▼	
 协同工具软件 			
• 三维门刚设计软件			
• 二维门刚设计软件			
 二维重铜厂度设计… 			
※常用接口 &			0
• Revit接口			(i)
• PKPM接口			
• Midas接口	您暂时还没有打开过任何工程		
Etabs接口			9
/JK Structure V7.1.0	• 2025绘排水BIM软件培训 • 2025提建软件培训课程行	建钴节能	
	- AVAJUE #4/11 /1 #1 #1/12/1	-54 ME 75 11 0V	

- 3、支持一键复制 support 邮箱地址;
- 4、优化常用接口设置功能对话框,使操作更直观;

45402021.8024			and the	登录
结构设计软件	4 设置	常用接口设置		× 五度以五四日 5
结构设计软件 (欧…	命 法服存者	您当前设置的产品为:结构设计软件		
结构设计软件 (准	 ○ 产品別書初留 	备选接口:	常用接口:	
V.Paco通期性分析…		SAP2000接口	Revit接口	
1. 市民の序呈圧力有い	- BIDIRH R.M.	Abaqus 提口 STAADIEC	PKPM接□ Mid~#PD	
10/1911月14117		PDS接口	Etabs接口	
		广厦接口	PDMS接口	
二班门所设计软件		Planbar接口	D PXML#L	
124 備 初川 1元 19 14		uni接口	\odot	
常用接口 🍳		Tekla接口 Bentley接口		9
Revit接口		IFC接口		6
PKPM接□		SAF接口 SP3D接口		
Midas接口				6
Etabs接口				
PDMS接口		恢复默认		
			R010 9477	NH C
				E

5、优化了云盘文件的下载流程,支持手动选择下载路径;

- 6、集成界面可显示当前软件版本;
- 7、在线更新会在有可用补丁时显示【NEW 标签】。

 · 结构设计软件 · 结构设计软件 · 结构设计软件(美… · 结构设计软件(反… · 结构) · 结构设计软件(反… · 结构) · 结构的设计软件(反… · 结构) · 结构) · 结构的设计软件(反… · 结构) · 专员 · 专员	盈遭科结构设计软件 (YJKS) 非软件是为多。真理要就成例计算分析面容器的空间相合成例有器次分析与应计软件,成用字类的现在分 定是主要求。原则,有为素、需体结构等。	文古之八·· 谷生18天 谷生18天 谷灯: おからいろう </th
 Y-Paco弹塑性分析… 协同工具软件 三维门刚设计软件 二维门刚设计软件 二维司则一座设计 	最近打开 ○新建 □打开 ▷進行 回工程打包 模块	模型荷能输入 *
・常用接口 Q		6
РКРМ接口		
・ Midas接口 ・ Etabs接口	您暂时还没有打开过任何工程	
PDMS接口		0
		E
IK Structure V7.1.0	- 2022時代中上の10時代は2回 - 2022時代時代の回答用人の 7	n Advisite why.

第二章 平台建模

2.1 集成界面【新建】工程进行路径层级以及特殊字符的判断

增加判断的原因:

由于保存路径过深或者工程路径里面存在特殊字符,有时候可能会导致软件出现异常。 判断的原则主要有两方面:

- (1) 工程保存路径不宜过深。
- (2) 工程路径里面,尤其是工程名称里面不建议使用特殊字符。

当然,如果存在上述两种情况,仍然可以正常新建模型,软件只是给出提示。

꺂 盈建科软件	我的YJK 文档中心 新闻资讯 在线更新 YJK云盘	- 🗆 ×
 ※ 我的产品 (29) ・结构设计软件 ・结构设计软件 (美… ・结构设计软件 (成… ・结构设计软件 (芯… ・结构设计软件 (港… ・Y-Paco弹塑性分析… 	盈建科结构设计软件 (YJKS) 本软件是为多、高层建筑结构计算分析面明制的空间组合结构有限元分析与设计软件,适用于各种规模分子经好多、有关表现 混凝土框架、框剪、剪力墙、简体结构等。 最近打开 ● 新建 □打开 > 运行 圓工程打包 模块: 模型荷载输入	登录 云授权/云盘账号
 ・ 切向工具软件 ・ 三维门刚设计软件 ・ 二维门刚设计软件 ・ 二维重钢厂房设计… ・ 常用接口 ペ 	□ 請給重新建工程是否存在以下问题: 1、保存路径是否过深: 2、工程路径下,尤其是工程名称里面应尽量差急使用特殊字符; 如果有以上情况,建议调改一下,避免可能引起软件出现异常的情况。	٢
 Revit接口 PKPM接口 Midas接口 Etabs接口 PDMS接口 	确定	
YJK Structure V7.1.0 授权信息	 2025録建软件培训课程介绍——建筑节能… 2025暖通BIM软件培训 2025暖通BIM软件培训 2025録建软件培训课程介绍——智能转图… 	

2.2 构件布置菜单栏增加左右箭头按钮,可以单击将未显示全的菜单显示出来

对于类似【构件布置】菜单,即无法显示完全的功能模块均增加了左右箭头按钮,可以用鼠标 点击来调整菜单显示,旧方法的按住鼠标中键拖动方式仍然保留。

2.3 导出 IFC 支持悬挑板的导出

YJK7.1.0版本导出 IFC 功能支持悬挑板的导出。

2.4 增加【导入 GFC】功能

此功能是对接广联达的土建模型的gfc格式的数据,支持导入YJK里。

2.5 优化调改软件右下侧的界面视觉比例控制器时的构件以及荷载列表框的适配

目前支持构件以及荷载列表的自动适配,即调整视觉比例放大后,构件和荷载列表大小、里面 文字大小会自动调整。

2.6 优化高分辨率屏幕的软件适配

针对一些常用的对话框,高分别率的屏幕下进行了适配优化。

2.7 优化调改系统缩放比例时的软件适配

针对一些常用的对话框,进行了调改系统的缩放比例后的适配优化。

第三章 前处理及计算

3.1 结构设计, 增加"非线性施工模拟"功能

软件新增"非线性施工模拟"功能,用户可设置施工模拟工况,对单元、荷载、边界条件进行分 组,在各施工步中指定激活、钝化单元,激活、钝化荷载,激活、钝化边界条件,程序自动根据用户 设定的施工模拟参数依次进行结构自由度定义、刚度矩阵组装、荷载向量组装,考虑结构几何非线 性和材料非线性进行计算分析。结果保存分为每个施工步结束和最终施工步结束,在设计结果中, 根据结果保存的选择查看相应的结果。具体操作流程如下:

1、在【计算参数】的【结构总体信息】中,选取恒荷载计算信息为非线性施工模拟,如下图所 示:

YJKCAD-参数输入-结构总体	太信息					×
11111111111111111111111111111111111111	结构体系	框架结构	```	1	恒荷载计算信息	非线性施工模拟 ~
<u>结构息体信息</u> 计算控制信息	结构材料	钢筋混凝土	`	1	风荷载计算信息	一次性加载 施工模拟一
1 控制信息 利度信息	所在地区	全国系列 2010	\ \	/	地震作用计算信息	非线性施工模拟
高级分析 非线性屈曲分析 分析求解参数	地下室层数		0		 □ 计算吊车荷载 □ 考虑预应力等效 	□ 计算人防荷载 「「す」」 「す」 す 式 二 、 、 、 、 、 、 、 、 、 、 、 、 、
风荷载信息 基本参数	嵌固端所在层·	号(层顶嵌固)	0		□ 计算温度作用	

2、在【计算参数】的【高级分析】中设置非线性施工模拟的相关参数,如:结果保存、是否考 虑几何非线性或者材料非线性、求解器类型、加载步骤数量、迭代次数、收敛条件等。

	- 计算控制信息 > 高级分	析		
諭入关键字搜索 清空	二阶效应		整体缺陷	
结构总体信息	□考虑P-Δ效应		□ 考虑整体缺陷	
计算控制信息	分项系数: 恒载	1.3 活载 1.5	● 按屈曲分析模态考虑整	体缺陷
控制信息 刚度信息	迭代次数 [0,100]	0	对应的屈曲模态号	1
高级分析	收敛误差 [0.0001	, 0.2] 0.001	最大缺陷值(mm)	100
分析求解参数	□考虑梁元P-ム效应	,	方向のエーエー	Z ●合成
风何致信息 基本参数		-	○ 按假想水平力考虑整体	缺陷
指定风荷载	屈曲分析		□ 计算长度系数置为1	
地震信息	□ 进行屈曲分析			
自定义影响系数曲线	屈曲描态新聞	4	非线性施工模拟	
时域显式随机模拟法		-	结果保存	
地展作用放入条数 性能设计	达代次数 [0,100]	10	● 最终施工步结束 ○ 每	个施工步结束
性能包络设计	收敛误差 [0.0001,	0.2] 0.001	老虎几何非线性。老	自患材料非线性
帰震滅震 (武霊)が気欲恐い	屈曲分析荷载组合:			
设计信息	***	77.44	· 水解器类型 Pard	liso Coupl 🗸
活荷载信息	何報上况	杀到	加载步骤数量	10
构件设计信息	DEAD	1	White the second	
初後构件设计信息	LIVE	0.5	达代次额[0,100]	30
钢构件设计信息			- 收敛条件	
包络设计			☑ 位移控制	0.001
17111月122。 材料参数			図荷栽協制	0.001
钢筋强度			□□□□\$\\$\12\#\	
地下室信息				
何我生真。	- Triba			

3、在【前处理】的【施工模拟】中设置非线性施工模拟工况,共有两种方式,一种是程序生成 默认分组及次序,另一种是用户手动设置工况管理、构件分组和分组次序,如下图所示:

A、当采用程序生成默认分组及次序时,只需要点击该图标并点击弹窗的确定,便可默认生成分

1000000 计算 高級 多数 1000	(15) 注读译 编辑	1 1978-22	HCAD IOPALL	DWG	1679. H	前处理及	我计算	2011年2月 5日 1月日日 1月日日 1月日日 1月日日 1月日日 1月日日 1月日日	○ 1 単系 単定义	2 xafatti + 32+				# # # 学 様定文			第二日日 「 「 「 「 「 「 「 「 「 「 「 「 「		本 一 一 一 一 一 一 一 一 一 一 一 一 一		田田 西荷折歳 予 市荷折歳 市荷折歳 市荷折歳 市荷折歳 市荷折歳 市荷 市荷 市荷 市 市 市	生成数度及数性	0000 日本 日本		1 EME	
											I	1	王成新议	69個/第三次	1序,将重置已	经输入的内容	1, 请问是百姓	× ட 燥?								
											l					¥2	100	A								

组及次序,在构件分组和分组次序中可以进行查看。

注意:

1)、程序默认将恒载作为施工模拟荷载,并默认荷载系数为1,用户可修改荷载系数,修改后点 击确定即可;

2)、程序是按照自然层对构件进行结构分组,自然层内包括楼板、梁、柱、墙、支撑等在内的 所有构件都会被划分到一个结构组内,左侧列表中会显示结构组名称和组内的对象数。用户对默认 的结构分组进行编辑的话,需要点击构件分组功能再进行后续操作,构件分组各功能介绍详见手动 设置的介绍;

3)、边界组功能目前正在开发,待开发完成后方可使用;

4)、程序默认每个自然层的荷载是跟随自然层施加,因此荷载组中无分组信息,用户想对某些 荷载人工进行分组,才会在荷载组中进行编辑,具体操作详见手动设置的介绍;

5)、程序根据默认生成的结构组进行分组次序指定,默认的施工步数与结构组数一致,同时也 会自动添加每个施工步需要激活的分组。用户可以对默认的分组次序进行编辑,具体操作详见手动 设置的介绍。

B、当用户手动设置非线性施工模拟次序时,需要按照【工况管理】→【构件分组】→【分组次序】的操作顺序进行,具体操作如下:

在【工况管理】中设置荷载系数并点击确定,计算时便会考虑相应的系数。

点击【构件分组】,在左侧的工具栏中进行分组操作,具体如下:

组名:用于设置分组名称,默认状态下点击结构组,此处会默认结构组1,点击荷载组,则会默认荷载组1;

新建/删除:先选择结构组或者荷载组,然后点击新建或者删除,就会添加或者删除相应的分组。 如果设置了组名,则按照设置的名称添加,如果未设置组名,则按照默认的名称依次添加;

追加/减少组构件:用来在分组中添加或者删除构件和荷载。添加构件和荷载时,先用鼠标点选 或者框选构件和荷载,也可以多次选择,选中的构件和荷载变为红色,然后选中要添加的目标组, 点击追加即可完成操作。删除构件和荷载的操作与添加类似,只是最后一步选择减少组构件即可;

点击【分组次序】,在分组次序对话框中进行施工步添加、分组激活或剔除的操作,具体如下: 添加或删除施工步:点击左上角的"+"或"-",便可添加施工步,施工步按照默认进行排序, 添加施工步的同时,待选分组一栏会把所有分组添加进来;

本步激活分组或本步剔除分组:以激活分组为例,先选择要编辑的施工步,在到待选分组中选择要激活的分组,点击本步激活分组左侧的"→",便将该激活分组添加完成。如果想删除本步激活分组中的分组,点击本步激活分组左侧的"←"即可。本步剔除分组的操作与上述操作类似,待将每个施工步的分组激活或者剔除设置完成后,点击确定便完成了设置,在【计算】选项中选择对应的功能进行后续操作即可。

注意:

1)、当计算参数选择了非线性施工模拟但是未指定施工次序或者设置了构件分组但是分组次序 中任意施工步都没有激活分组等情况时,程序计算会弹出下图所示的提示,需正确设置分组次序后 再进行计算。

	C:\YJKS\	YJKS_7_1_0\FeaStub64.exe X	
		非线性施工模拟,施工次序异常,请检查模型!	
		确定	
~		但它认为人业中国的一些相一	æ÷-

2)、当设置的分组次序不合理时,程序计算会弹出下图所示的提示,需正确设置分组次序后再进行计算。

C:\YJKS\YJKS_7_1_	0\FeaStub64.exe
-------------------	-----------------

?	非线性施工模拟, 否继续计算?	施工模拟恒载工况,	第 1 施工步计算失败,	请检查模型,是
			是(Y)	否(N)

3、在设计结果中可以在各层内力标准值文件(wwnl*.out)和结果位移文件(wdisp.out)中查 看非线性施工模拟计算的内力结果,也可以在三维内力和三维位移中查看非线性施工模拟计算的内 力和位移。以内力结果为例,如下图所示:

	(iCase)	Shear-X	Shear-Y	Axial	Mx-Btm 1	My-Btm	Mx-Top J	ly-Top	
N-	C =1 Node	e-i=100000	1, Node-j=1,	DL= 4.000(r	n), Angle= 0.	. 000			
*(EX)	5.3	0.4	57.8	-0.3	5.1	-0.4	-0.5	
- (EX)	5.3	0.4	57.8	-0.3	5.1	-0.4	-0.5	
*(EY)	0.4	5.3	57.8	-5.1	0.3	0.5	0.4	
(EY)	0.4	5.3	57.8	-5.1	0.3	0.5	0.4	
*(+\X)	0.3	0.0	3.3	-0.0	0.3	-0.0	-0.0	
(+\X)	0.3	0.0	3.3	-0.0	0.3	-0.0	-0.0	
*(-\WX)	-0.3	-0.0	-3.3	0.0	-0.3	0.0	0.0	
(-\X)	-0.3	-0.0	-3.3	0.0	-0.3	0.0	0.0	
*(+\Y)	0.0	0.3	3.3	-0.3	0.0	0.0	0.0	
(+\Y)	0.0	0.3	3.3	-0.3	0.0	0.0	0.0	工祝管理中设直的施工模
*(-WY)	-0.0	-0.3	-3.3	0.3	-0.0	-0.0	-0.0	│拟恒载会替换掉原有的恒│
	-WY)	-0.0	-0.3	-3.3	0.3	-0.0	-0.0	-0.0	载结里输出到文木山 并
*(DL)	-9.5	-9.5	-203.7	6.5	-6.5	5.5	-5.5 👗	日立未结用古日二的结用
(DL)	-9.5	-9.5	-203.7	6.5	-6.5	5.5	-5.5	且又平知来甲亚小明知来
*(1年1月2月(1月)	-0.4	-0.4	-9.8	0.3	-0.3	0.2	-0.2	力最终步结果
(自定义恒)	-0.4	-0.4	-9.8	0.3	-0.3	0.2	-0.2	
*(LL)	-1.6	-1.6	-35.0	1.1	-1.1	0.8	-0.8	
(LL)	-1.6	-1.6	-35.0	1.1	-1.1	0.8	-0.8	
*(自定义工ど	2) -O	.2 -0.	2 -3.8	3 0.1	-0.1	0.1	-0.1	
- (自定义工况	しても こうしん こうしん こうしん こうしん こうしん こうしん こうしん しんしん こうしん しんしん しん	.2 -0.	2 -3.8	3 0.1	-0.1	0.1	-0.1	

3.2 结构设计, 增加"计算地震位移时不考虑周期折减系数"选项

计算参数的控制信息菜单中,增加了"计算地震位移时不考虑周期折减系数"的选项。不勾选时,输出的地震位移考虑地震信息中设置的周期折减系数。勾选时,则地震位移不考虑周期折减系数。

 \times

 输入关键字搜索 清空 结构总体信息 计算控制信息 对度均信息 网度同点 高级分析 小析求解参数 外析求解参数 外析求能参数 本定风荷载 地震信息 自定义影响系数曲线 时域显式随机模拟法 地震作用放大系数 性能包络设计 隔震震性能包络设计 设计信息 	 计算控制信息 > 控制信息 水平力与整体坐标夹角(°) 连梁按墙元计算控制跨高比 建强按墙元计算控制跨高比 增通梁连梁砼等级默认同墙 墙元细分最大控制长度(m) 1 板元细分最大控制长度(m) 1 /短墙肢自动加密 弹性板荷载计算方式 平面导荷 膜单元类型 经典膜元(QA4) 考虑梁端阳域 考虑律端阳域 考虑律端阳域 「墙梁跨中节点作为阳性楼板从节点 梁与弹性板变形协调 弹性板与梁协调时考虑梁向下相对偏移 刚性楼板假定 	多塔参数 自动划分不考虑地下室 可确定最多塔数的参考层号 可确定最多塔数的参考层号 可确定最多塔数的参考层号 ●各分塔与整体分别计算, 電話筋取各分塔与整体结果较大值 现浇空心板计算方法 计算现浇空心板 交叉梁法 ●板有限元法 位移 一増加计算连梁刚度不折减的地震位移 ○计算地震位移时不考虑周期折减系数 輸出节点位移 梁墙自重扣除与柱重叠部分 一概板自重扣除与梁墙重叠部分 世球中古拉全地港地抵空計算
隔震 武震	 □ 弹性板与梁协调时考虑梁向下相对偏移 ▶ 刚性楼板假定 ● 不强制采用刚性楼板假定 ○ 对所有楼层采用强制刚性楼板假定 ○ 整体指标计算采用强刚,其他计算非强刚 □ 地下室楼板强制采用刚性楼板假定 	 □ 采项目里扣标与在里叠部分 □ 楼板自重扣除与梁墙重叠部分 □ 地震内力按全楼弹性板6计算 □ 门式刚架按平面结构方式计算 □ 错层主次梁生成刚性杆自动铰接

3.3 结构设计, 增加"加速度限值"选项

计算参数的风荷载信息菜单中,增加了"加速度限值"的选项。不勾选时,加速度限值为灰显状态,设计结果仅输出顶点最大加速度,但是不做超限判断。勾选时,加速度限值为高亮状态,用 户可设置加速度限值,设计结果输出顶点最大加速度,并且对是否超限做出判断,如下图所示: YJKCAD-参数输入-风荷载信息 > 基本参数

	风荷载信息 > 基本参数						
输入关键字搜索 清空	执行规范 GB50009-2012 ~	体型系数分段 1 🗸 🗸					
结构总体信息	地面粗糙度类别	- 第一段					
	●A ○B ○C ○D	最高层号 30 X挡风系数	1 Y挡风系数 1				
2001月息 図度信息		X迎风面 0.8 X背风面					
高级分析	修止后的基本以(压(kN/m2) 0.3	Yǐ仰风面 0.8 Y背风面					
非线性屈曲分析	风荷载计算用阻尼比(%) 5						
风荷载信息	结构X向基本周期(s) 0.2	→ 二八 最高层号 0 X 14 风系数	0 Y挡风系数 0				
基本	结构¥向基本周期(s) 0.2	X迎风面 0 X背风面	0 X侧风面 0				
地震信息	读取计算结果周期值	Y迎风面 0 Y背风面	0 Y侧风面 0				
自定义影响系数曲线		第三段					
时域显式随机模拟法	承载力设计时	最高层号 0 X 挡风系数	□				
地震作用放大糸数	风荷载效应放大系数	X迎风面 0 X背风面	0 X (別风面 0				
性能包络设计		Y迎风面 0 Y背风面	0 ¥侧风面 0				
隔震減震 減雲性能句络设计			均布风荷加载				
设计信息	\$A14PE/6707 2						
沽荷载信息 构件设计信息	☑ 加速度限值(m/s2) 0.13						
构件设计信息	─────────────────────────────────────	•	扭转风振				
」 边缘构件设计信息 	- 结构宽深	祳	□考虑扭转风振				
1919日以口信息 1914日以口信息							
材料信息			瑄构一的油转 0.2 唐期(s)				
材料参数							
地下室信息							
荷载组合		结构的平动周期(s) 0.2					
组合系数 日本							
自定义工况组合							
抗震整定与加固 按要终空与加固							
机最金定与加固 抗震鉴定(构件验算)							
钢结构加固	修正后的基本风压(kW/m2):						
安全性鉴定	指沿海、强风地区及规范特殊规定等可能	と在基本风压基础上,对基本风压	进行修正后的风压。对于一般				
危险房屋鉴定标准	上程,可按照《 倚载规范》 的规定采用	•					
装配式							
□ 导入 号出	恢复默认 高级选项		确定 取消				
į.	💵 wmass.out - 记事本						
2	文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)					
	风振舒适度验算						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃	r dr dr dr dr dr				
	塔号:1						
	按《荷载规范》附录J计算:						

女≤10戦死20∥的求」计异:		
】X向顺风向顶点最大加速度(m/s2)	= 1.005	***超限***
X向横风向顶点最大加速度(m/s2)	= 5.831	***超限***
Y向顺风向顶点最大加速度(m/s2)	= 0.213	***超限***
Y向横风向顶点最大加速度(m/s2)	= 0.517	***超限***

# 3.4 设置菜单, 增加配筋简图显示轴压比的控制选项

设计结果的设置菜单中,可以通过选项控制是否显示墙、柱的轴压比,以及控制输出单肢墙或 者组合墙的轴压比。______

■ 显示设置	×
结果显示 构件属性 文字样式 图层颜色 其他设置	
梁霄筋/霄筋率设置	
上端包络截面数量 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1	
下端包络截面数里 1 7 1 包绍结果的截面数里。	
✔ 瑊震考虑正截面超强系数时,上端1、2截面(8、9截面)强制取包络	
简图显示	
□ 构件编号简图显示建模截面简称	
✓ 配筋简图预制构件PC值自动显红	
✓ 配筋滴图显示柱轴压比	
第四立会 配筋面积単位	
间 国 文 子 ○ Cm 2 ○ mm 2	
□配筋简图文字避让	
最多迭代次数 ₃	

# 3.5 高级选项, 增加"楼梯自重自动考虑踏步"

当计算参数-刚度信息中勾选"考虑楼梯刚度"后,软件会计算楼梯的自重,该选项控制在计算 楼梯自重时,是否进一步考虑踏步的重量。

控制参数	×
通用   梁   柱   墙   整体指标   其	他   计算相关   前处理   前处理(续)   施工图   鉴定加固
移动荷载 移动荷载与吊车荷载自动组合 移动荷载强制按单根轨道计算 门式刚架 抗风柱分段高度(m) 门时柱底读接时转动约束释 放比例(0-100)% 抗风柱承担坚向荷载	其他 > 2680混凝土弹模取值按线性外推 中梁/边梁与板最大错层值 50.000 多塔围区外扩 100 填充墙刚度系数 0.500 ご 履杆自动设置较接 ご 导出PKZM模型强制使用YJK中梁刚度放大系数 空心板刚度折减方式
□26879 422 833 位移存储的0值阈值 0.000001 非线性收敛误差 0.001 ☑ 连接单元考虑剪切位置	<ul> <li>○ 按肋梁中点</li> <li>○ 按肋梁质心</li> <li>☑ 梁间冗余节点不凝聚质量</li> <li>□ 上下不对称梁的中和轴与楼板平齐</li> </ul>
<ul> <li>楼梯</li> <li>✓ 考虑機様本身计算</li> <li>楼梯板网格细分尺度(m)</li> <li>○.500</li> <li>○.500</li> </ul>	<ul> <li> <ul> <li>地震内力技全樹準性板6计算时自动考虑深板偏移             <ul></ul></li></ul></li></ul>
<ul> <li>組合梁</li> <li>✓ 組合梁施工验算自动默认梁端絞接</li> <li>✓ 組合梁施工验算恒载仅考虑梁板自重</li> <li>組合深随工验算恒载化考虑梁板自重</li> </ul>	<ul> <li>✓ 考虑役狈加龄州贸</li> <li>□ 顶板与外墙旋接</li> <li>墙</li> <li>□ 底层墙体与非底层墙体不全成墙柱</li> </ul>
当日マキナ別は2.0人大まえ上り         0.000           特征值分析参数            特征值分析迭代次数         0           特征值分析迭代误差         0.00100	□ 兩兩週時一世和兩兩週時十日前後週往

# 3.6 整体计算书, 增加板、梁的挠度、裂缝简图

之前软件只支持板的配筋简图,并且需要在板施工图执行批量出图操作。新版本增加了板的挠

度、裂缝简图,梁的挠度、裂缝简图,并且均只需要在对应施工图模块执行完成计算操作后,即可 在整体计算书中生成简图,不再需要用户手动执行批量出图操作。需要注意,板的配筋、挠度和裂 缝需要将要出简图的楼层均执行计算才行,梁的挠度和裂缝只需要执行一次计算即可。

整体计算书		×
<ul> <li>整体计算书</li> <li>一 结构分析及设计结果简图</li> <li>一 结构简图</li> <li>中 结构平面图</li> <li>中 母 和 而荷载图</li> <li>中 母 机荷载图</li> <li>中 母 机 厚 图</li> <li>中 母 机 厚 图</li> <li>中 母 机 厚 图</li> <li>中 母 拉 顶内力图*</li> </ul>	选择工況/组合(标***简图) 组合类別: 単工況 ✓ X地震 Y地震 X规定水平力 Y规定水平力 +X风 +X风 +Y风 +Y风 +YR、 +YR、 +YR、 +YR、 +YR、 +YR、 +YR、 +YR、	×
<ul> <li>□ 社 (瓜内力图*)</li> <li>□ 设计结果简图</li> <li>□ 设计结果简图</li> <li>□ 边缘构件图</li> <li>□ 边缘构件图</li> <li>□ 边缘构件图</li> <li>□ 一 和压比图</li> <li>□ 输工 的火参数图</li> <li>□ 输工 局面图</li> <li>□ 标为管图</li> <li>□ 板热镜图</li> <li>□ 板热镜图</li> <li>□ 梁挠度图</li> <li>□ 梁挠度图</li> <li>□ 梁挠度图</li> <li>□ 梁挠度图</li> <li>□ 梁挠度图</li> </ul>	□ - 1 PA □ 恒载 □ 活载 全选 全清 反选	
整体指标规范:高规抗标从严 > ? ? ② 使用分图设置   □ 输出层间梁楼层   ?	· 确定 取洋	4

# 3.7 整体计算书, 增加罕遇地震作用的位移角输出

在整体计算书第9章,整体指标统计-位移角和位移比这一节,增加框架结构根据抗规 5.5.5 条,罕遇地震作用下,弹塑性层间位移角的输出。

#### 3.8 上部结构修改影响到计算及设计结果

### 3.8.1 优化加腋梁在变截面位置的高度判断

优化加腋梁在设计模型中变截面的位置,使得配筋截面的选取更符合实际。相比旧版本,在变 截面的范围内,正、斜截面的结果会有较小的变化。

### 3.8.2 优化与错层梁相连的柱的计算长度的判断

柱与错层梁相连时,更合理的考虑梁标高、悬挑梁与否、梁与柱的水平夹角等因素,来确定柱 的计算长度。

#### 3.8.3 修正个别情况下填充墙的刚度的计算

优化个别情况下,填充墙被节点时刚度等效不合理的问题。

# 第四章 混凝土施工图

### 4.1 板施工图

# 4.1.1 楼板施工图中新增挠度选筋功能

楼板施工图支持根据挠度自动选筋,挠度限值的默认取值方式按照《混规》中表 3.4.3 取值,同时放开挠度限值的参数,可由用户根据实际设计需求对其进行修改。



## 4.1.2 计算简图中墙支座处计算结果文字显示避让墙线

楼板计算结果简图中将原来的墙线由单线改成了双线,双线的修改引起文字压线的现象,7.1版 本中调整了墙支座处计算结果的文字位置,解决文字与墙线的避让问题。



#### 4.2 梁施工图

## 4.2.1 优化梁施工图"选筋方案"定义的使用逻辑



选筋方案的主要使用场景:实现地下部分与地上塔楼部分的参数分别定义与保存。即定义过选 筋方案的楼层参数是单独保存的,选筋方案对应的楼层下修改参数后点击参数设置对话框下部的【确 定】,此时是更新的当前层的参数定义及所在选筋方案下的参数,可以保证下次再进到该层时使用的 参数文件即对应原来的选筋设置。而对于未指定过选筋方案的楼层,则各层使用统一的参数设置文 件。

参数设置对话框下部的【确定】按钮的使用:(1)当修改参数且未在选筋方案中选中任一方案 时,点击【确定】,此时更新当前层所对应的参数文件(如果当前层在选筋方案中被指定过,则对应 选筋方案的参数文件也一起更新;如果当前层在选筋方案中未被指定过,则更新未定义楼层使用的 统一的参数设置文件);(2)当修改参数且在选筋方案中勾选了某一方案时(可以不是当前层对应的 方案),点击【确定】,此时更新当前层所对应的参数文件及选中方案的参数文件(其实现方式与"重 置当前方案"功能类似)。

### 4.3 柱施工图

## 4.3.1 双击编辑修改模式下,箍筋选筋方案区分节点核心区及非节点核心区

鼠标选择双击修改模式下修改箍筋信息时,可以对节点核心区及非节点核心区箍筋分别进行修 改。双击非节点核心区箍筋后,勾选"单独指定核心区"即可对节点核心区箍筋单独修改。同理,对 于节点核心区和非节点核心区箍筋直径不一致,单独列出节点核心区箍筋信息时,双击节点核心区



箍筋后,也可取消勾选"单独指定核心区"对非节点核心区箍筋进行选筋修改。

# 4.3.2 双击修改异形柱纵筋时,选筋方案可区分固定筋与分布筋

鼠标双击修改模式下,双击异形柱纵筋时,可分别对固定筋及分布筋进行修改,程序可针对固 定筋及分布筋单独给出备选的选筋方案。



# 4.4 墙施工图

# 4.4.1 增加参数控制用来判断 YBZ 使用的墙肢轴压比的取值原则

旧版程序中在确定是否按照 YBZ 设计时使用的墙肢轴压比,是考虑了各个组合墙肢的加权平均 轴压比后的结果,该结果无法直接与设计结果下的各墙肢的轴压比进行比较,当需要复核时不直观。 因此 7.1 版本中在前处理边缘构件设计信息页增加参数控制轴压比的取值原则,由设计人员根据设 计经验确定,可以直接使用墙肢的最大轴压比,默认仍与旧版程序的取值方式一致。



墙施工图会根据前处理所选定的底部加强区底层轴压比判断方法考虑墙轴压比的取值,如下图



# 4.4.2 对于墙柱箍筋结果受墙身抗剪水平筋控制的构件输出校核信息

在墙柱箍筋选筋时,箍筋本身除了要满足边缘构件的箍筋构造要求外,对于整个墙肢都是墙柱 范围的情况,尚需要满足墙身水平筋抗剪及墙身水平筋的构造要求。当箍筋选筋的最终结果是由墙 身水平筋结果控制时,在构件的tip提示及墙柱表校对信息中输出其验算过程,方便用户校核与规范 构造箍筋的相关要求。



# 4.5 其他

## 4.5.1 模板图截面尺寸标注支持型钢截面

新程序在施工图模板图中,支持对于型钢混凝土构件标注其型钢截面



## 4.5.2 模板图截面尺寸标注支持按柱设计的斜杆支撑

新程序在施工图模板图中,支持对于按斜杆建模但按柱设计的构件标注其截面



# 第五章 基础

### 5.1 基础建模

## 5.1.1 独基和承台增加按构件设置混凝土和钢筋材料等级的功能

实际工程中有时会出现不同区域的基础构件使用不同的材料强度的情况,因此,V7.0.0 版本增加按筏板板块单独交互设置混凝土和钢筋材料等级的功能,并且V7.1.0 版本拓展了可交互修改的构件类别,支持独基和承台按构件设置混凝土和钢筋材料等级。

通过【统一修改】下拉菜单中的【材料参数】菜单功能交互修改单构件材料等级,功能界面见 下图。



对话框中选择需要修改的构件类别,并选择需要修改的材料种类与材料等级后,即可在模型中进行交互修改。当勾选"恢复初始参数值",交互设置时材料等级会恢复为默认值(即参数中设置的材料等级)。后续的基础有限元计算、基础构件设计、基础施工图设计等均使用交互修改的材料等级。

## 5.1.2 基础构件批量转换扩充承台转筏板、加厚区、柱墩的功能

V7.1.0版本基础构件批量转换扩充承台转筏板、承台转加厚区、承台转柱墩的功能。

▲ 計算 計取 指定 上部结构 本置 有限元 ▼ 404
其它
地基梁
● 地基梁转筏板
✓ 围合时开洞 (不勾选时按条形拼接)
○ 地基梁转加厚区
◎上加厚 ○下加厚
筏板
○筏板转承台
加厚区
○加厚区转承台
○ 加厚区转柱墩
○ 加厚区转筏板
承台
○ 承台转筏板
○承台转加厚区
○承台转柱墩
柱墩
○柱墩转加厚区
○ 柱墩转承台

承台转筏板会识别承台尺寸和标高进行转换。

由于加厚区和柱墩依托于筏板布置,结合实际工程转换需求,会存在三种情况:(1)当承台顶 高于筏板顶时,转换为上加厚或上柱墩,并根据承台顶标高确定加厚区和柱墩厚度;(2)当承台顶 低于筏板顶时,转换为下加厚或下柱墩,并根据承台底标高确定加厚区和柱墩厚度;(3)当承台顶 高于筏板顶并且承台底低于筏板底时,不进行准换。

转换时需注意,承台转柱墩时,只支持矩形承台转换;承台转加厚区时,加厚区会根据主筏板 轮廓进行裁剪。下图为转换情况示意和转为柱墩效果。





### 5.1.3 地基梁、拉梁荷载布置支持自定义工况

V7.0.0 版本增加全新的地基梁、拉梁附加荷载设置方式,新布置的荷载与原有方式布置的荷载 为叠加关系,荷载类型包括均布荷载、集中荷载、梯形荷载,工况类型包括恒载和活载。

V7.1.0版本拓展工况类型,支持自定义工况下的地基梁、拉梁附加荷载布置。

布置时采用先定义、后布置的方式。

#### 荷载定义

拉梁和地基梁使用同一个荷载定义库,执行【拉梁荷载】、【地基梁荷载】菜单功能,会弹出荷 载定义列表框,荷载定义列表中对该类构件下已使用的荷载定义进行填充显示。



点击"添加"按钮,弹出荷载定义对话框,可以设置荷载类型、荷载工况、荷载数值。 荷载类型包括均布荷载、集中荷载、梯形荷载;荷载工况包括恒载、活载、自定义工况。 荷载定义管理原则为恒载、活载分别定义,所有自定义工况共用荷载定义,因此列表中定义描述下分为恒、活、自三种情况。



#### 荷载布置

拉梁、地基梁荷载布置使用不同的菜单。



执行【地基梁荷载】菜单功能,选择需要布置的荷载,三维模型中展示该工况类型下所有已布 置的荷载。当选择自定义工况定义后,会弹出自定义工况选择对话框(见下图),对话框中包括上部 定义的所有自定义工况,选择需要布置的自定义工况,三维模型中展示该自定义工况下已布置的荷 载,在模型中进行交互即可完成布置。

布置过程新增荷载为叠加关系,拉梁布置流程同地基梁。



### 荷载删除

执行【删除构件荷载】菜单功能,会弹出工况列表对话框,按工况类型删除布置的荷载,不区 分拉梁和地基梁。



#### 计算相关

新增荷载以附加荷载的形式参与计算,【基础计算及结果输出】菜单模块可在【附加荷载】简图 中查看已布置的荷载。



# 5.1.4 地基梁、拉梁尺寸支持双击文字修改

以前版本建模支持独基、承台、柱墩等双击尺寸文字直接修改构件尺寸的功能, V7.1.0 版本扩展地基梁、拉梁双击修改功能。

地基梁支持修改肋梁宽、高和翼缘宽; 拉梁支持修改宽、高。



### 5.1.5 增加自动读取接基础楼层功能

基础读取上部结构接基础楼层根据上部结构建模的不同分三种设置方式,分别为按普通楼层设置、按广义楼层设置、对于空间建模的结构可设置读取空间层支座。基础接楼层参数在总参数中进行设置(见下图)。

地质 荷载 参数 设置	人工 布置 人工	▲ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	<ul> <li>         布置 编辑      </li> </ul>		承台 定义 放坡 布置	●●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●	<b>日</b> 夏( 计算
地质 荷载 参数	独基	地基梁	筏板	桩基承台		桩	
近料          · (2) 2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)         · (2)	布置 ◆ 独基 总参 计算参数({ 4 提 預 位 2000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (10	地基梁 地基梁 物重要性系数: 1	花板     花板 	前桩 布置 柱基承台 費土重在筏板布置对话框 承担弯矩比例只影响独基 恒活高水 使用说明	中设置,与此	▲ 社 社	×
导入	导出 透	● 普通楼层 与基础相接的 ○广义楼层 与基础相接的 (楼层号之间) □读取空间层(只读取有支座的) □择规范	的最大楼层号:	1 ]: 1,2,)	定	取消	

以前版本默认为普通楼层,并且最大楼层号为 1,对于部分多层接基础模型等需要手工进行设置。V7.1版本增加了自动读取上部结构接基础楼层的功能,对于无基础数据库的新建模型,基础建模执行【重新读取】时会检索上部结构的接基础楼层,自动设置接基础楼层的方式和接基础楼层号。

使用时需注意:重新读取不改变已有的基础数据库,即对于有基础数据的模型,重新读取不在 进行自动设置;不自动检索空间层数据,对于空间层接基础构件还需要手工设置。

自动设置示例见下图,上部结构为广义层建模,基础可自动设置广义层接基础楼层参数。



5.2 基础计算、设计、结果输出

5.2.1 地基梁设计增加与承台相交处截面内力设计

程序中地基梁配筋设计截面有 9 个, 9 个截面按梁段长度等距设置, 以前版本每个截面取截面

位置处内力进行配筋设计,但对于承台+地基梁模型,地基梁与承台交接处截面可能比相邻的固定位置的截面内力大(见下图),因此 V7.1.0版本地基梁设计时考虑与承台交接处的截面,改进后仍按9个截面设计,软件内部对交接处截面进行顶、底筋与箍筋进行设计,并将此位置的配筋面积与离其最近的原有验算截面进行比较,如交接处截面配筋面积大于原有截面,则使用交接处截面的内力和配筋替换原有截面。



# 5.2.2 拉梁配筋简图按"左-中-右"三段式显示

拉梁设计时分为9个截面(I、1~7、J),每个截面分别进行配筋设计。以前版本配筋简图中拉梁 顶、底纵筋与箍筋取9个截面中最大值进行输出,V7.1.0版本改为"左-中-右"三段式显示,与地基 梁相同左边数值包络"I、1、2"3个截面,中间数值包络"3、4、5"3个截面,右边数值包络"6、7、J"3个截面。结果示例如下。

	-I-	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-J-
-M (kN*m) N (kN)	-8 327	-3 327	0 327	0 327	0 327	0 327	0 327	-3 327	-8 327
LoadComb Ton Asu	(28) 527	(28) 479	(28) 454	(28) 454	(28) 454	(28) 454	(28) 454	(28) 479	(28) 527
Rs(%)	0.75	0.68	0.65	0.65	0.65	0.65	0.65	0.68	0.75
KS/KS, MAX	NO	NO	NO	NO	INO	NO	NO	NO	
+M (kN*m)	0	0	1	3	4	3	1	0	0
N(kN) LoodComb	(28)	327	(28)	(28)	327	(28)	327	(28)	(28)
Btm Asd	(20)	454	463	484	491	484	463	(20)	(20)
Rs(%)	0.65	0.65	0.66	0.69	0.70	0.69	0.66	0.65	0.65
Rs>Rs, max *	NO	NO *							
V(kN)	8	6	4	2	0	2	4	6	8
T (kN. m)	0	0	0	0	0	0	0	0	0
N(KN) LoadComb	(40)	(40)	(40)	(40)	(28)	(40)	(40)	(40)	(40)
Asv	57	57	57	57	38	57	57	57	57
Rsv(%)	0.14	0.14	0.14	0.14	0.09	0.14	0.14	0.14	0.14
LoadComb	(40)	(40)	(40)	(40)	(40)	(40)	(40)	(40)	(40)
V(kN)	8	6	4	2	0	2	4	6	8
i (RN. M) Vmay (DN)	236	236	236	236	236	236	236	236	236
V>Vmax(KN) V>Vmax	NO								



# 5.2.3 桩抗拔承载力验算中, 桩自重计算考虑水浮力

桩抗拔承载力验算时需考虑桩自重的贡献,以前版本桩自重根据桩定义中的容重计算(桩容重参数见下图), V7.1.0 桩自重计算时可以考虑水浮力。

柷	锭义		Х
ŧ	脏详情表:		
	内容	数据	
	桩类型	水下冲(钻)孔桩	
	竖向承载力(kN)	800	
	水平承载力(kN)	200	
	抗拔承载力(kN)	300	
	桩直径(mm)	500	
	容重(kN/m3)	25.0	
		500	
		是否采用后注浆技术 不注浆	$\sim$

当组合中包含高水或低水工况时,软件可以准确考虑高水和低水的水位,根据桩排开水的体积 精确计算桩考虑水浮力后的自重。对于管桩,桩水浮力按外径计算。



## 5.2.4 桩考虑负摩阻力时, 单桩也按 1.2Ra 进行验算

以前版本,桩考虑负摩阻力后非地震组合下单桩竖向承载力按 1.0Ra 进行验算,由于负摩阻力可视为附加荷载,因此 V7.1.0版本将负摩阻力当做普通荷载进行桩承载力验算,即非地震组合下单桩默认按 1.2Ra 进行竖向承载力验算,单桩验算过程见下图。

* 以验 * 验 * Mk * Ra * Qg * 注	下算公式: 计微出荷载 非電力 一下算公式: 计电子 一个	振 本 本 4 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	的单桩竖向承载 <= 1.2Ra <= 1.5Ra 证值(kN) ,按γ0*Nk验到	戰力验算结果 算	
组合 (3 ) ) ) ) ) (3 ) ) ) (3 ) ) ) (4 ) ) ) (4 ) ) ) (5 ) ) (7 ) (9 ) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12)) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) ) (12) (12	$\begin{array}{c c} & Nk \\ \hline \\ & 745.2 \\ \hline & 636.4 \\ \hline & 638.6 \\ \hline & 634.5 \\ \hline & 634.5 \\ \hline & 745.1 \\ \hline & 745.2 \\ \hline & 745.2 \\ \hline & 745.2 \\ \hline & 745.4 \\ \hline & 634.5 \\ \hline & 690.4 \\ \hline & 691.4 \\ \hline & 692.7 \\ \hline & 692.7 \\ \hline & 682.7 \\ \hline \end{array}$	$\begin{array}{c} Ra\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0\\ 800.0$	Qg4444444444!!!!!!!	№+Qg<1.2*R2 -1.2*R2 -1.2:満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満満	№<1.5*Ra                                      

当高级参数中勾选"不含风和地震的标准组合按 1.0 倍 Ra 验算 Nkmax"时,不含风和地震的标

准组合下单桩同时验算1.0Ra。



5.2.5 局部抗浮稳定系数计算时, 桩拔力计入抗浮力统计; 并调整抗拔承载力利用 系数参数默认值

局部抗浮稳定验算计算模型中桩或锚杆的不以弹簧刚度参与计算,而是将抗拔承载力以外部荷 载的方式进行计算。

局部抗浮对竖向构件位置进行抗浮稳定性验算,抗浮稳定系数为抗拔力/水浮力,以前版本桩抗 拔力以负值方式计入分母,分母为水浮力-桩抗拔力,V7.1.0版本将桩抗拔力作为抗浮力计入分子。


同时, V7.1.0 版本调整桩抗拔力利用系数参数默认值,由原来的 0.7 调整为 1.0。

★次端人已参数 完委数 地基承载力计算 范障我很效弹性地 和消費参数 祉花ぞ板弹性地 材料表。 性能设计	高级参数-其他参数 花板/防水板设计 地基菜/拉菜/砌体杂基设计 承白/独基设计 小印/的口局部受压验算 沉降计算 有限元分析求解 其他容積	其他參數        抗振福肝、抗振椎设计        抗振爾鼠自承載力比     4       (14)        抗振承载力利用系数     1       地基土、椎承载力逾算        一不会风和地震的标准组合技1.0倍Ra验算Ikmax        注:不匀选时投1.2倍Ra验算        桩基重要性系数 >0(螺认1.0)     1       注:非地震组合下的桩基坚向力按 >0 ± xk;计算        軟弱下卧层压力扩散角(度)     0
导入	导出 选择规范	其他         构件最大配筋率       0.04       考虑人防最大配筋率         体元列度折减系数(0.5°1.0)       0.8         一有限元基础考虑高差引起附加弯矩       生成SAFE数据文件         计算结果保存为SQLite文件       计算结果保存为SQLite文件         保留小数点位时大于       4       进位显示         确定       取消

### 5.2.6 改进整体抗浮稳定性验算输出

V7.1.0 改进筏板整体抗浮稳定性验算输出形式,当模型中存在联通筏板或筏板中有突出筏板边界的其他构件,为方便与单工况校核,板块中的浮力和抗浮力数值只包含板块轮廓范围内的统计值,并联通板块底部输出联合后的浮力和抗浮力数值。



## 5.2.7 柱墙冲切和柱墩冲切新增冲切结果列表,并通过双击实现构件快速定位

对于大体量工程,定位超限的冲切位置比较耗时,因此 V7.1.0 版本查看柱墙冲切和柱墩冲切结 果简图以及进行柱墙冲切与柱墩冲切交互查看计算书时会自动在页面左侧弹出新增的冲切结果列表 对话框,并可通过在列表中双击实现构件快速定位。

通过对话框中的控件可灵活设置列表中的显示内容。



5.2.8 板块交接处增加按板块合并后的轮廓验算柱墙或柱墩对筏板冲切 实际工程中会存在筏板局部降板或筏板板块有高差的情况,如下图示例。



以前版本柱墩冲板时,只根据其中一块板确定冲切锥,V7.1.0版本新增高级参数选项(见下图), 当勾选时,相交位置不等高板块如厚度差值小于设置的尺寸时,相交位置的柱墩或柱墙冲板时按合 并后的轮廓以厚度较小的板确定冲切锥轮廓与冲切厚度。判断冲切是否跨越两块板以45度冲切锥判 断,如柱墩45度冲切锥跨越两个厚度,则认为该柱墩需要按合并轮廓进行冲切验算,冲切示例见下 图。不勾选时同以前版本冲切规则,默认不勾选。



## 5.2.9 基础设计新增 HRB600(STD)等多种钢筋等级

V7.1.0 版本基础设计新增 CRB500、HRB600(STD)、HRB650(STD)、HRBF600E(河南)、 HTRB(HRBF)630E 钢筋等级, 扩充后基础支持的钢筋等级与上部结构一致。

参数输入-材料表									
总参数	材料表								
地基承载力计算参数	构件类型	强度级别	钢筋级别	箍筋级另	│ 底保护层	厚度(mm)	顶保护层厚度(mm)	最小配筋率%	5
汎時计具参数    柿筏筏板弾性地基梁计算参数(	独基	30	HRB400	_	40		40	0.15	
水浮力,人防,荷载组合表	承台	30	HRB400	HRB400	40		40	0.15	
· 材料表 林能设计	承台桩	30	HRB400	HRB400	50		—	0.40	
	地基梁	30	HRB400	HRB400	40		—	0.15	
	筏板(	30	HRB400 $\checkmark$	—	40		40	0.15	
	板桩(	30	HPB235 HPB300		50		—	0.40	
	拉梁	30	HRB335		40		—	0.15	
	条基	30	HRB400 HRB500		40		—	0.15	
< >>	注*:防水板、柱墩取?		RRB400 HTRB600 T63/E/G CRB600H HG6/C		台顶保护层厚度用于FEA方法下的正截面受弯计:			算	
参数说明	钢筋名称	抗拉强度	CRB550	0		抗压强度	设计值(N/mm^2)		^
	HPB235	210	HRB650 (STI HRB650 (STI	)) 可菌)		210			
	HPB300	270	HTRB (HRBF)	630E		270			

## 5.3 基础施工图

## 5.3.1 三桩承台配筋表增加同原位标注一样的每侧钢筋总根数

V7.1.0版本基础施工图中三桩承台配筋表钢筋规格输出同平面图。



## 5.3.2 条基板分布筋规格新增参数控制

条基板分布筋不进行配筋设计,以前版本条基分布筋数量为2根12,V7.1.0版本增加参数控制,包括直径和最大间距两个参数,实配钢筋数量根据条基板宽度与间距确定。

参数设置		×
	₽↓ ■ ∮ Search	٩
所有设置	参数	用户设置
	□ 条基板设置	
基础总设置	归并系数	0.2
2	条基板代号	TJB
	钢筋最大直径(mm)	32 •
地基梁, 拉梁	钢筋最小直径(mm)	10 -
011	钢筋优选直径	12,14,16
198	钢筋间距取值范围(mm)	100,150,200
条基板设置	分布筋直径(mm)	12 •
	分布筋间距取值范围(mm)	300
	另存为加载	存为默认 恢复默认 确定 取消



## 5.3.3 桩配筋图过滤不进行配筋的桩

V7.1.0版本进行桩平法图绘制时,对于不进行配筋设计的桩不再进行选筋设计。

## 5.3.4 承台配筋修改对话框如顶部配筋为0层时,顶部配筋规格控件变灰不可编辑

为避免歧义, V7.1.0 版本承台配筋编辑对话框, 如顶部配筋为 0 层时, 顶部配筋规格控件变灰不可编辑。

编辑标注			$\times$				
承台截面:	300	300					
承台名称:	CTj01	L					
顶部X向:	C12@	200					
顶部Y向:	C12@	200					
底部X向:	C28@	0100					
底部X向: 底部Y向:	C28@	0100 0100					
底部×向: 底部×向: □钢筋层数修改	C28@	0100 0100					
底部X向: 底部Y向: 例筋层数修改 底部X向: 1	C28@	9100 9100 顶部X向:	0				
底部X向: 底部Y向: 钢筋层数修改 底部X向: 1 底部Y向: 1	C28@	9100 9100 页部X向: 页部Y向:	0				

### 5.4 地质资料

### 5.4.1 岩石单轴抗压明确单位和默认数值

以前版本地质资料中,岩石类土层单轴抗压强度使用的单位是 KPa,如桩长试算时按 Kpa 计算,由于地勘报告中给出的单位是 MPa,因此 V7.1.0 版本明确将地质资料中的岩石类单轴抗压强度单位

 $\times$ 

## 修改为 MPa。

🍻 标准参数表

土名称	回弹模量(MPa)	压缩模量(MPa)	重度(kN/m3)	摩擦角(°)	粘聚力(kPa)	状态参数	状态参数含义
淤泥	25.00	2.00	16.00	0.00	5.00	1.00	(定性/-IL)
淤泥质土	25.00	3.00	16.00	2.00	5.00	1.00	(定性/-IL)
黏性土	25.00	10.00	18.00	5.00	10.00	0.50	(液性指数)
红黏土	25.00	10.00	18.00	5.00	0.00	0.20	(含水量)
粉土	25.00	10.00	20.00	15.00	2.00	0.20	(孔隙比e)
粉砂	25.00	12.00	20.00	15.00	0.00	25.00	(标贯击数)
细砂	25.00	31.50	20.00	15.00	0.00	25.00	(标贯击数)
中砂	25.00	35.00	20.00	15.00	0.00	25.00	(标贯击数)
粗砂	25.00	39.50	20.00	15.00	0.00	25.00	(标贯击数)
砾砂	25.00	40.00	20.00	15.00	0.00	25.00	(标贯击数)
角砾	25.00	45.00	20.00	15.00	0.00	25.00	(标贯击数)
圆砾	25.00	45.00	20.00	15.00	0.00	25.00	(标贯击数)
碎石	25.00	50.00	20.00	15.00	0.00	25.00	(标贯击数)
卵石	25.00	50.00	20.00	15.00	0.00	25.00	(标贯击数)
风化岩(不完整)	25.00	10000.00	24.00	50.00	200.00	25.00	(标贯击数)
风化岩	25.00	10000.00	24.00	50.00	200.00	15.00	(单轴抗压MPa)
中风化岩	25.00	20000.00	24.00	50.00	200.00	20.00	(单轴抗压MPa)
微风化岩	25.00	30000.00	24.00	50.00	200.00	25.00	(单轴抗压MPa)
新鮮岩	25.00	40000.00	24.00	50.00	200.00	30.00	(单轴抗压MPa)

## 第六章 钢结构施工图

## 6.1 平面图中标注坡梁标高差

在平面图中增加标注坡梁相对于本楼层的标高差,并在施工图参数中增加控制选项。



### 6.2 平面图中取消标注支撑构件编号

支撑一般在立面图中画出,并标注构件编号和节点等。V7.1版本平面图中取消支撑构件编号显示为使图面更清晰。并在施工图参数中增加控制选项。



## 6.3 针对箱型柱的梁柱节点识别改进

针对箱型柱在前处理指定为门刚柱属性时的梁柱节点之前程序没有识别出节点。V7.1 针对箱型 柱定义为门刚柱属性时,按普通梁柱节点进行设计和出图。



## 6.4 针对柱脚极限承载力的抗震连接系数

V7.1版本针对柱脚极限承载力的抗震连接系数,分别按照《抗震规范》第8.2.8条、《抗规规范》 单层钢结构厂房章的第9.2.16条,《高钢规》第8.1.3条执行不同的连接系数值。



连接系数与前处理计算参数中的结构体系和选择的规范联动。当选择单层工业厂房时,针对抗规第 9.2.16 的要求外露式柱脚极限承载力连接系数为 1.2。当选择高钢规时,连接系数执行《高钢规》第 8.1.3 条。勾选抗规时,按照《抗震规范》第 8.2.8 条。

之前版本的程序极限承载力连接系数均按照《高钢规》第8.1.3条执行。

#### 6.5 梁柱节点域的屈服承载力折减系数

V7.1版本针对梁柱节点域的屈服承载力折减系数,区别高钢规和抗规的区别。连接系数与前处 理计算参数中选择的规范联动。

选择高钢规,节点域的屈服承载力折减系数执行《高钢规》第7.3.8条,抗震等级为一、二级时 折减系数为0.85,抗震等级为三、四级时折减系数为0.75。

选择抗规,节点域的屈服承载力折减系数执行《抗规》第8.2.5条,抗震等级为一、二级时折减 系数为0.7,抗震等级为三、四级时折减系数为0.6。



之前版本的程序梁柱节点域的屈服承载力折减系数均按照《抗规》第8.2.5条执行。

#### 6.6针对圆管支撑增加螺栓连接新节点

V7.1版本圆管支撑增加新的连接形式:单板焊接与柱,并与支撑双板采用螺栓连接方式。



## 第七章 减震隔震

### 7.1 支持北京隔震地标超强系数

目前,采用北京地标进行隔震设计时,隔震结构设计方法选择"分部设计法",主模型为小震, 当需要进行中、大震性能包络设计时,可采用"性能包络设计"实现;7.1在"性能包络设计"中增 加了"考虑超强系数",勾选后,对中震下普通水平构件的端部正截面不屈服设计,应用钢筋超强系 数1.25,钢材超强系数1.25。

YJKCAD-参数输入-地震信息 > 性能包络设计	×
<ul> <li>・ 地震信息 &gt; 性能包络设计</li> <li>・ 輸入关键字搜索</li> <li>▲ 「有空」</li> <li>● 按照抗标方法进行性能包络设计</li> </ul>	
结构总体信息       中震计算模型       ☑ 不屈服       ☑ 弹性       性能水准 正截面       不屈服       ※         控制信息       中震地震影响系数最大值       0.45       周期折减系数       1       □         高級分析       非线性屈曲分析       5       3       1       □         小萌载信息       ● 全楼统一       5       5       ○       全楼统一       ○       ○       全       ○       ○       全       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○	+載面 不屈服 ~ → 考虑超强系数 5 2 5 1 1
地震作用放大系数     □考虑双向地震作用     □考虑双向地震作用       性能设计     反应位移法     场地设计地震动峰值位移Umax(m)     X向       原電電電     0.1     Y向	] 0.1
前時間機械展 減震性能包络设计       大震设计信息         大震计算模型       ☑不屈服       〕弹性       性能水准 正截面 不屈服        第         有       有       4       大震地震影响系数最大值       0.9       周期折減系数       1       特征         物件设计信息       約件设计信息       六震地震影响系数最大值       0.9       周期折減系数       1       特征         物件设计信息       初构件设计信息       不屈服       第       第       第       第         包络设计       6       2       第       第       第       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	A載面 不屈服 ▼ □ □ 0.1
<b>女王在鉴定</b> 可靠性鉴定标准 危险房屋鉴定标准 <b>装配式</b>	
与入     与出     恢复默认     高级选项       确定	取消

## 7.2 摩擦摆隔震支座增加产品库

支持按曲率半径、摩擦系数进行过滤显示,但目前不支持导入导出功能。

💵 连接单元定义									×
连接属性1	类型: 摩擦摆隔震支度	· 坐 🕹		设计参数					
	有效刚度KE   有 kN/m, kN.m/radC	頁效阻尼 非线性 冈 E(kN.s/m)  K(k	度 慢摩擦 惕 N/m) 系数	P摩擦  摩擦系数 系数   变化率s/m	曲牽半径 (m)				
	U1 0 0	0							
	□ V2 0 0	0	0 0	0	0				
	□ V3 0 0	0	0 0	0	0				
	<b>R1</b> 0								
	<b>R2</b> 0 0								
	<b>R3</b> 0 0								
<b>《 》</b> 》	「「「」」」 「「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」	; ] [	↑ 收起 ↑		确定即	時			
全部 🗸 🗸	□ 使用构件型号作为5	崔义名称  导入   5	号出 恢复默认			曲率主	▶ 径: 全部 🚽 摩擦系	数: 全部	$\sim$
全部   其他	型号	竖向刚度(kN/m)	水平有效刚度(kN/m	) 水平初始刚度(	(kN/m) 慢摩擦系	数 快摩擦系数	摩擦系数变化率s/m	曲率半径(n	n) ^
	FPS-II-1000-3.48	667000	573	8000	0.01	0.02	20	3	
	FPS-11-2000-3.48	1.33333e+06	1147	16000	0.01	0.02	20	3	
	FPS-II-3000-3.48	2e+06	1720	24000	0.01	0.02	20	3	
	FPS-II-4000-3.48	2.66667e+06	2293	32000	0.01	0.02	20	3	
	FPS-II-5000-3.48	3.33333e+06	2867	40000	0.01	0.02	20	3	
	FPS-II-6000-3.48	4e+06	3440	48000	0.01	0.02	20	3	
	FRG 11 7000 0 40	4 66667- 106	4012	50000		0.02		2	
	FPS-II-7000-3.48	4.0000/e+00	4013	00000	0.01	0.02	20	5	
	FPS-II-7000-3.48 FPS-II-8000-3.48	4.00007e+06 5.33333e+06	4587	64000	0.01	0.02	20	3	~

# 第八章 动力弹塑性(EP)

## 8.1 滞回曲线中的减震元件最大内力表支持多工况

除支持单工况输出外,7.1 增加了多工况的包络值、平均值输出,工况选择可按住 CTRL 键进行 多选。

地震波 ArtWave-RH1TG040,Tg(0.40)[0][COME ArtWave-RH1TG040,Tg(0.40)[90][COM Loma Prieta_NO_739,Tg(0.39)[0][COM Loma Prieta_NO_739,Tg(0.39)[90][COM Tabas, Iran_NO_143,Tg(0.40)[0.0][CO Tabas, Iran_NO_143,Tg(0.40)[90.0][Co	· · · · · · · · · · · · · · · · · · ·					
显示构件						
☑梁 ☑柱 ☑斜撑						
☑ 墙   ☑ 楼板   ☑ 局部坐标系						
关键构件内力滞回曲线						
曲线类型 F-D ~						
内力分项 1轴平动 ~						
I/J號 I湍 ~						
选择构件						
生成Excel						
(文件名为KeyEleCyde.CSV, 位于PostEP/PLSTIC目录下)						
最大内力统计						
减震元件最大内力表						
●包络值 ○平均值 ○单波值						

8.2 **弹塑性计算参数开放模态分析是否考虑竖向振型参数** 弹塑性计算参数-模型参数中,增加"是否计算竖向振型"。



# 第九章 弹性时程

## 9.1 地震波选择中的设防水准自动和模型选择联动

"地震波选择"中的"设防水准"自动与"模型选择"中的设防水准匹配,以使选波与当前所选 模型自动匹配。在模型选择中双击进行模型切换,当前模型以*号标记。

减震模型选择	$\times$
主模型 中震* 大震	
*表示当前模型 确定 取消	



## 9.2 弹性时程开放选波剪力对比的楼层号

选波时,时程与反应谱的基底剪力应符合规范要求,自动选波增加"基底剪力对比楼层"参数, 由用户定义选波时基底剪力对比所用的楼层号;



## 第十章 鉴定加固

### 10.1 安全性鉴定时, 增加参数控制砼构件构造按非抗震进行鉴定

以前版本,不考虑地震组合进行安全性鉴定时,构件承载能力项采用配筋面积比方式鉴定评级时,也会考虑抗震等级,如会根据抗震等级确定最小配筋率、梁支座受压区高度限值、梁端受压钢筋最小面积等。

V7.1.0 在总参数【高级选项】下增加"安全性鉴定时, 砼构件构造按非抗震鉴定"控制参数, 勾选时, 不考虑地震组合进行安全性鉴定时, 配筋面积比方式鉴定评级下, 将构件按非抗震等级进行配筋面积计算。

控制参数	×
通用   梁   柱   墙  整体指标   非	其他 │ 计算相关│ 前处理│ 前处理(续) │ 施工图 鉴定加固 │
鉴定	加固设计
☑ 进行剪力墙鉴定	□ 粘钢法加固,柱轴压比计算时不考虑钢板贡献
□ 非框架梁不进行抗震鉴定	□ 粘钢法加固,梁不考虑受压钢板
☑ A类建筑构件抗震承载力验算使用全组合	☑ 外包钢加固梁,不进行承载力提高40%判断
□ 柱鉴定考虑节点核心区	
□ 不输出抗震鉴定内容	
☑ 安全性鉴定时, 砼构件构造按非抗震鉴定	

引申:此参数不影响考虑地震组合时的构件安全性鉴定评级,是否考虑地震组合在总参数中进行设置。

#### 10.2 高级参数增加不输出构件抗震承载力鉴定内容参数

以柱构件信息为例,勾选抗震鉴定和安全性鉴定后,构件信息中设计和鉴定过程主要包括三部 分内容。

第1部分为构件全组合设计过程与钢筋面积鉴定内容,输出的是全组合包络的配筋设计过程(内容同非鉴定模型,但配筋设计过程按总参数【抗震鉴定与加固】选项卡所选的规范系列),并在最后给出了实配钢筋面积与计算钢筋面积比较的结果。

第2部分为构件抗震承载力鉴定内容,输出各评定子项抗力效应比,并判定是否通过,通过标准为参数中设置的评定标准。该部分内容软件提供了单张简图来表达(简图名称为"抗震鉴定结果"),并在鉴定报告中抗震鉴定章节统计输出。

第3部分为构件安全性鉴定评级内容。



V7.1.0 版本高级选项下增加"不输出抗震鉴定内容"参数,勾选时,第2部分内容将不再进行输出,并且配套的简图也不输出结果。默认不勾选。



## 10.3 建模工作树扩充一键衬图的加固设计简图类型

V7.1.0 版本建模工作树扩充一键衬图的加固设计简图类型,扩充后简图包括加固做法、原有钢筋、承载力提高幅度、实配与计算钢筋面积比、新增钢筋、做法面积。



## 10.4 原有钢筋简图屏蔽新增构件钢筋显示

由于新建构件不进行实配钢筋鉴定, V7.1.0 版本原有钢筋简图对于新增构件不再标注实配钢筋 面积。



## 10.5 砌体强度交互简图增加存图机制

V7.1.0版本对于砌体强度交互简图提供支持存为DWG图纸。

参数设计	① 1000000000000000000000000000000000000	● 承重場	● 300 000 000 000 0000 0000 0000 0000 0	2 2 注 注 前	副体置	レン 属性 删除	<mark> </mark>	〔1〕 构件编号	荷载图示	 <b>一</b> 増剪力图		#### 培轴力图	■ ■ ■ ■ 里	(上) 局部承压	2 梁垫输入	▶ 文本结果
参数设计	三维显示		扂	性设置			计算			图形题	显示				梁垫输入	文本结果
修改研	切体材料		)	×						 M5.0	/ <b>N</b> u10.0					
砂彩	强度等级M 强度等级Mu		5	]												
- ~~:	)型)受守级(MB  体抗压强度	按下列取	 值	1												
抗	压强度设计	值MPa	0	]												
口砌	体抗剪强度	按下列取	值													
抗	剪强度设计	值MPa	0													
										M5.0	/Nu10.0					

## 第十一章 欧美规范

## 11.1 整体计算书, 增加钢梁的挠度限值设置、墙的反力输出

在整体计算书中,增加钢梁的挠度限值设置,以及墙的反力输出。



# 第十二章 水池软件

## 12.1 增加基础构件的查找功能

之前版本对于模型中有多个同类型基础构件时,难以判断出每个构件的具体指代对象。为便于 用户定位到具体的基础构件,程序在【构件布置】的【构件查询】中,新增基础构件,可以在构件 类型栏输入需要查询的构件编号或构件 ID,选择对应的查询类型后,该构件高亮显示:



基础 ID 单构件查询

也可以选择构件类型框中的类型,选中该类型后,模型中对应显示该类型的所有构件的编号与构件 ID:



基础构件编号与 ID

## 12.2 优化柱墙探伸功能,柱墙探伸时不识别筏板内的构件,且将图标改置于基础 布置菜单

之前版本对于模型中有多类基础构件时,柱墙优先探伸到最后布置的构件顶面,因此可能出现 因承台上翻导致水池封闭不严、轴测简图墙体悬空的问题,新版优化了柱墙探伸功能,对于和筏板 组合在一起的基础,使用柱墙探伸时,程序优先探到筏板顶面,仅当竖向构件下方无筏板时,才按 照之前的探伸顺序执行;为使该功能更加醒目,现在图标改置于基础布置菜单:





柱墙探伸后

注: 柱墙探伸后, 竖向构件与基础重叠位置工程量统计可能不完全准确, 施工图绘制可能失真, 建议仅在特殊情况使用;

## 12.3 增加【只配筋】设计选项

因为有的池体较大,构造复杂,所以计算时长较长。之前版本,用户每次改下水池信息,都要 把程序走一遍,较为耗时。为此,V7.1版本在计算窗口增加【只配筋】设计选项,便于用户修改 设【水池设计】信息后,快速完成仅对实配选筋有影响的参数修改设计联动,但并不影响整体计算 结果:



总体信息 总体信息 0 池外设计地面标高(m) 地下水位标高(m) 0 水池类型 敞口水池  $\sim$ 水池混凝土等级 C35  $\sim$ HRB400 水池钢筋等级  $\sim$ 500 底板外挑尺寸(mm)





初始值

──裂缝控制 ──按以下规范验3	算製罐			
◎ 混凝土结构	勾设计规范 GB 50010-2010(2015年版)			
○给水排水]	[程钢筋混凝土水池结构设计规程 CECS 138-2002			
○石油化工舗	闲筋混凝土水池结构设计规范 SH/T 3132−2013			
- 构件裂缝宽度[	限值(mm)			
顶板	0.2			
底板	0.2			
梁	0.2			
柱	0.2			
扶壁柱	0.2			
内壁	0.3			
外壁	0.3			
☑根据允许裂缝宽度选筋				

总体信息
池外设计地面标高(m):0.00
(常年)地下水位标高(m):0.00
水池类型:有盖水池
水池混凝土等级:C40
水池钢筋等级:HRB500
抗震设防烈度:6度(0.05g)
结构重要性系数:1.00
顶板裂缝宽度限值(mm):0.20
底板裂缝宽度限值(mm):0.20
梁裂缝宽度限值(mm):0.20
柱裂缝宽度限值(mm):0.20
扶壁柱裂缝宽度限值(mm):0.20
内壁裂缝宽度限值(mm):0.30
外壁裂缝宽度限值(mm):0.30
底板外挑尺寸(mm):500
混凝土重度(kN/m^3):25.0
(设防)地下水位标高(m):0.00



【只选筋】计算后 注: 该选项只能是在执行了整体计算及构件设计之后使用;

## 12.4 分项系数增加【详细设置】,支持各类工况系数单独设置

因为目前按水池规程,池内水压力、竖向土压力、池外土侧压力的分项系数这几项都是1.27 的分项系数,但为满足用户将池内水压力区分出来的需求,软件将提供【详细设置】菜单,分别支 持非地震组合与地震组合下池内水压力、竖向土压力、池外侧土压力、活载、地面堆载、温(湿) 度作用等工况系数的分别设置:

(1)对非地震组合,可分别设置池内水压力、竖向土压力、池外土侧压力3个荷载工况的分项
 系数γG;可分别设置活载、地面堆载、温(湿)度作用3个荷载工况的分项系数γQ、组合系数ψ
 c。

(2)对地震组合,可按不同荷载工况分别设置重力荷载代表值分项系数。

分项系数			×
カマル558X	非地震組合           ×61(恒载)           不利         1.3           有利         1           ×6(池内水压力等)         不利           不利         1.3           有利         1	活載、地面堆載、温(湿)度作用 分项系数 vg 1.5 組合系数 vo 0.9 池外水圧力 分项系数 vg1 1.5	抗译组合 水浮力 基本组合系数 1.35 水浮力 标准组合系数 1 详细设置
<ul> <li>□恒戦</li> <li>○池の水压力</li> <li>考虑不利佈置</li> <li>○是</li> <li>●否</li> <li>○送向土压力</li> <li>○池外木匠力</li> <li>○地小土側压力</li> <li>○池外木匠力</li> <li>○地小堆載</li> <li>○温健児度作用</li> <li>●整体升降温</li> <li>□水平地震</li> <li>□空店市朝載</li> <li>□常市本荷載</li> <li>□水浮力</li> <li>零数说明</li> </ul>	地震組合 マ62 (重力) 市鉄代表値) 不利 1.3 有利 1 アEh、VEV、VE2 仅水平向 1.4 仅竖向 1.4 水平向*竖向 0.5	重力荷载代表值组合系数       活载     0.5       地面堆载     1       池外水压力     1       温(湿)度作用     分顶系数 Yt     1.5       组合系数 Vt     0.65	准永久组合 活動 准永久值系数 也面堆载 准永久值系数 1 2 3 3 4 3 4 3 4 3 4 3 2 3 5 1 1 2 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 5 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	吊车组合 分项系数 1.5 组合系数 0.7 准永久值系数 0.5	风荷载 分顷系数 1.5 确定 取消	消防车荷载 分项系数 1.5 组合系数 0.7

分项系数(详细设置)				×
非地震组合				
☑ 𝒴𝔅(池内水压力等)				
-νG(池内水压力)	νG(竖向土压;	ታ)	┌️∀ੳ(池外土侧压)	ታ)
不利 1.3	不利	1.3	不利	1.3
有利 1	有利	1	有利	1
☑活载、地面堆载、温	(湿)度作用			
活载	地面堆载		温(湿)度作用	
分项系数 γQ 1.5		g 1.5	分项系数 γQ	1.5
组合系数 ψ。 0.9		c 0.9	组合系数 屮。	0.9
地震组合				
☑ 𝒴 (重力荷载代表值	[)			
vGE(恒载)	-γGE(池内水压力)	□VGE(竖向土压力	り)γGE(池)	外土侧压力)————————————————————————————————————
不利 1.3	不利 1.3	不利 1.3	不利	1.3
有利 1	有利 1	有利 1	有利	1
- vGE(活载)	∨GE(地面堆载)	-νŒ(池外水压/	ታ)	
不利 1.3	不利 1.3	不利 1.3		
有利 1	有利 1	有利 1		
	确定	取消		

详细设置

12.5 "分项系数"中增加"选择水池类型"按钮

V7.1 在"分项系数"对话框中增加"选择水池类型"按钮,点击后弹出"水池类型"对话框。

分项系数			×		
法择水地类型 → 抗行《建筑结构同事 ○ 性设计处于标准》 《 读影的68-2018) → 程行表遣用规范》 《 读影的2-2021) 《 结构重要性 系数	非地震組合 vG(恒戦) 不利 1.3 有利 1 vG(也内水圧力等) 不利 1.3 本利 1.3 本日 1.5 本日 1.5	活载、地面堆载、温(湿)度作用 分项系数 vq [1.5] 组合系数 vo 0.9 地外水压力 分项系数 vq1 [1.5]	抗率组合 水浮力 基本组合系数 水浮力 标准组合系数 1		
工 兄組合法师 「 恒 戦 」 活戦 ご 追求外 圧力 考虑不利布置 ○ 是 ● ○ 否 」 监向土压力 ご 辿り木压力 ご 地均木匠力 ご 地均木匠力 ご 通り水匠力	市市         上           地震组合         VGE(重力荷载代表值)           不利         1.3           有利         1           VEL、VEV、VEE         Q水平向           Q水平向         1.4           水平向・塔向         0.5	重力荷载代表值组合系数 活载 0.5 地面堆载 1 池外水压力 1 温(湿)度作用 分项系数 vt 1.5 何会系数 vt 0.65	详细设置 准永久组合 活動 進永欠值系数 迎小水压力 准永欠值系数 1 温(型)度作用 温(型)度作用 1	<ul> <li>水池美型</li> <li>地下式水池</li> <li>○ 有盖水池</li> <li>● 敵口水池</li> </ul>	×
	用车组合 分项系数 1.5 组合系数 0.7 違永欠値系数 0.5		消防车商载 分项系数 [15] 组合系数 [0.7]	地面水池 ○有保温设施的有盖水池 ○无保温设施的有盖水池 ○敵口水池 ○其他 通定 取消	

软件按《给水排水工程钢筋混凝土水池结构设计规程》CECS 138-2002 表 5.2.2 将水池分为 5 类,如不属于其中任何一类,可选择"其他"。

永久作用						可变	作用					
水池形式及工况			结构自重 G1	池内 水压 力 Fw	竖向 土压 力 F ₈	池外 土側 压力 Fp	预加应力Fp	不均 匀沉 降 △	顶板 活载 Q	地 相 和 和 载 Qm	池外 水压 力 Qgw	温 (湿) 度作 用 F
Γ		闭水试验	~	~			Δ					~
地下式	有盖水池	使用时池 内无水	~		~	~	Δ	Δ	~	~	~	
水池		闭水试验	~	~			Δ					~
	敞口水池	使用时池 内无水	~			~		Δ		~	~	~
Γ	有保温设 施的有盖 水池	闭水试验	~	~			Δ					~
		使用时池 内有水	~	~	~		Δ	Δ	~			
地面	无保温设	闭水试验	~	~			Δ					~
山水池	加 水 施 水池 水池	使用时池 内有水	~	~	~			Δ	~			~
		闭水试验	~	~			Δ					~
敞口水池		使用时池 内有水	~	~			Δ	Δ				~
	注: 1 表中有"√"的作用为相应池型与工况应子计算的项目; 有"△"的作用为应 按具体设计多件确定采用, 当外十压于地下水时不计 oow·											

表5.2.2 强度计算的作用组合

 表中未列入地下式有盖术池池内有水的工况,但计算地基承载力或池壁与 池顶板为弹性固时计算池顶板,须予考虑;

3 不同工况组合时,应考虑对结构的有利与不利情况分别采用分项系数;

在"水池类型"对话框点击确定按钮后,软件自动按表 5.2.2 勾选荷载工况。下表为五种水池 类型对应的勾选项。如需考虑其他荷载工况,可手工勾选。

地下式 有盖水池	地下式 敞口水池	地面 有保温设置的 有盖水池	地面 无保温设置的 有盖水池	地面 敞口水池
<ul> <li>✓恒载</li> <li>✓ 恒载</li> <li>✓ 活载</li> <li>✓ 池内水压力</li> <li>✓ 忠成不利布置</li> <li>○ 是 ● 否</li> <li>✓ 坚向土压力</li> <li>✓ 池外水压力</li> <li>✓ 池小水压力</li> <li>✓ 地面堆载</li> <li>✓ 温(湿)度作用</li> <li>● 整体升降温</li> <li>□ 水平地震</li> <li>□ 以荷载</li> <li>□ 吊车荷载</li> <li>□ 水浮力</li> </ul>	<ul> <li>✓恒载</li> <li>□活载</li> <li>✓池内水压力</li> <li>考虑不利布置</li> <li>○是</li> <li>④九生の市土</li> <li>○加小土側压力</li> <li>✓池外水压力</li> <li>✓地外水压力</li> <li>✓地面堆载</li> <li>✓温、22月度</li> <li>用</li> <li>整体升降温</li> <li>□水印地震</li> <li>□以荷载</li> <li>□吊车荷载</li> <li>□水浮力</li> </ul>	<ul> <li>✓ 恒载</li> <li>✓ 活载</li> <li>✓ 池内水压力</li> <li>考虑不利布置</li> <li>○ 是 ④ 否</li> <li>✓ 竖向土压力</li> <li>● 池外北压力</li> <li>● 池小水压力</li> <li>● 地面堆载</li> <li>✓ 温(湿)度作用</li> <li>● 整体升降温</li> <li>● 水平地震</li> <li>● 竖向地震</li> <li>● 风荷载</li> <li>● 吊车荷载</li> <li>■ 常方</li> <li>荷载</li> <li>● 水浮力</li> </ul>	<ul> <li>✓ 恒载</li> <li>✓ 活载</li> <li>✓ 池内水压力</li> <li>考虑不利布품</li> <li>○ 是 ● 否</li> <li>✓ 坚向土压力</li> <li>□ 池外水压力</li> <li>□ 池小水压力</li> <li>□ 池小水压力</li> <li>□ 池小水压力</li> <li>□ 池小水压力</li> <li>□ 池小水压力</li> <li>□ 温(湿)度休用</li> <li>□ 整体升降温</li> <li>□ 水平向地震</li> <li>□ 风荷车荷载</li> <li>□ 常方车荷载</li> <li>□ 水浮力</li> </ul>	<ul> <li>✓ 恒载</li> <li>□ 活载</li> <li>✓ 池内水压力</li> <li>考虑不利布품</li> <li>○ 是 ● 否否</li> <li>□ 竖向土压力</li> <li>□ 池外水压力</li> <li>□ 池外水压力</li> <li>□ 池小水压力</li> <li>□ 池山面堆载</li> <li>☑ 温(湿)度作用</li> <li>□ 整体升降温</li> <li>□ 水平地震</li> <li>□ 以荷载</li> <li>□ 吊石荷载</li> <li>□ 消防车荷载</li> <li>□ 水浮力</li> </ul>

表 1	五种水池类型对应的荷载工况
· L C T	

只选筋

在"分项系数"对话框点击确定按钮时,根据所勾选的荷载工况自动生成荷载组合。组合规则 与 V7.0 相比,唯一变化是:选择"地面有保温设施的有盖水池"时,对池内满水工况,温(湿) 度作用默认不参与组合。

此外,考虑水下水池、地面水池顶板有覆土等情况,V7.1取消了一些荷载工况间的绑定关系。 如:不考虑"池外土侧压力"时也不能考虑"竖向土压力"和"池外水压力"。

### 12. 6Word 计算中增加整体模型插图

V7.1 在 Word 计算书中增加整体模型插图,完善计算书整体性,便于用户了解模型全貌:



Word 版计算书

### 12.7 在基床系数等对话框中增加必要提示

对基床系数、桩刚度、恒活荷载、覆土重四项模型信息,在<基础布置>或<前处理及计算>菜单 弹出时,允许编辑;在<基础计算及结果>输出菜单弹出时,仅允许查看。因此 V7.1 增加必要提示, 对以上规则予以强调:

增加的提示信息

基床系数	桩刚度	恒活荷载	覆土重
·		·	说明:       // 呈硫计質及结果输出〉         菜里下代支持查音:       如雷湯霜 , 诸切則、前处理及计算、菜里 , 点击(祝板/華参修改)/按钮。         定义       覆土重ぐ「LPa]         覆土重ぐ「LPa]       20         序号       覆土重         衛土重       备注         覆土重显示方式       白柏相見示
	< > > 恢复默认 关闭	<	<ul> <li>● 按单元显示</li> <li>恢复默认 关闭</li> </ul>

## 12.8 同步了水池软件和主程序的菜单

为满足部分用户使用主程序新增的便捷功能的要求, V7.1版本同步了部分主程序菜单, 具体修改如下:

菜单		按钮	变动情况说明
	轴 线 网	衬图调改模型	更换图标
	俗	्रम् भेन	- 4歳 - 1-11 - 1-2-2-11
		<u> </u>	
		隔墙填充墙	更换图标
		拾取布置	移动到"修改"菜单组
		定义刷	移动到"修改"菜单组
	构 件 置	墙洞转连梁	增加按钮
齿		改梁宽	增加按钮
( () () () () () () () () () () () () ()		改梁高	增加按钮
空何 へ 谷 )		改墙宽	增加按钮
		改墙洞高	增加按钮
		改梁墙宽	增加按钮
		层间编辑	增加按钮
		漏斗	增加按钮
		门式刚架	增加按钮
		石化	增加按钮
	楼	(预应力空心板)	+祊 十口 セン 左口
	板	添加定义	· 迫加1女 扣
	布 置	布置预应力空心板	增加按钮

	荷	显示设置	增加按钮
	载		
	输	构件荷载删除	增加按钮
	入		
	自	显示设置	增加按钮
	定义工	构件荷裁删除	增加按钮
	况	173111101474001170	
	楼	局部楼层	增加按钮
	层	连续梁检查	增加按钮
	组	导入 REVIT	增加按钮
	装	导入 JSON	增加按钮
	宓	取消参照	增加按钮
	山	3D3S	增加按钮
	内	变截面拟合	增加按钮
	5日 松	移动荷载	增加按钮
	10	吊车荷载	增加按钮
		减隔震设计	增加按钮
	苦	人防构件	增加按钮
	則 处理及 计算	超配系数	增加按钮
		非调整构件	增加按钮
		包络设计	增加按钮
NL.		施工模拟	增加按钮
- 一 一 一 一 一 一 一 一 一 一 一 一 一		组合梁裂缝	增加按钮
异 <b>万</b> 初 上辺辻		三维位移	增加按钮
ヨロロ	设	网架网壳	增加按钮
	计	修改截面	增加按钮
	结	抗震设防专篇	增加按钮
	果	分图设置	增加按钮
		(导出)设计结果	增加按钮
		(导出)校审数据	增加按钮
		通用编辑设置	增加按钮
	Т.,	局部更新	增加按钮
	权	鉴定与加固	增加按钮
施	他工团	(楼承板)布置修改	增加按钮
工图	上图	楼承板计算	增加按钮
设		包络分组	增加按钮
计	ेना	通用编辑设置	增加按钮
	梁	配筋分区	增加按钮
	胞	(钢筋标注) 对齐	增加按钮
	上图	(钢筋标注)文字查重	增加按钮

		(配筋校核)面积校核	增加按钮
		S/R 验算	增加按钮
		洞口图	增加按钮
		(分图绘制)XY 分图	增加按钮
		(分图绘制) 主次梁分	+66 - 누구 수기
		图	增加按钮
		返回平面图	增加按钮
		通用编辑设置	增加按钮
		配筋分区	增加按钮
		画法切换	增加按钮
		立面改筋	增加按钮
	柱	交互归并	增加按钮
	施 工图	文字查重	增加按钮
		二维详图	增加按钮
		自定义参数重新选筋	增加按钮
		裂缝图	增加按钮
		实配录入	增加按钮
		加固详图	增加按钮
		配筋分区	增加按钮
	144	边缘构件属性修改	增加按钮
		文字查重	增加按钮
	<u> </u> 次把壁	二维详图	增加按钮
	旭上舀	墙柱墙梁计算面积	增加按钮
		边缘构件计算面积	增加按钮
	基	筏板按单元出图	增加按钮
	础施工	平面模板图	增加按钮
	图	读 CAD 图	增加按钮
右回	XX	详图工具	删除按钮
树	架网壳	十日	111122 七 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
细彻图	施工图	上共	加小林1女1五
工	程量统计	全部	增加按钮

## 12.9 池壁施工图中改筋后自动校审计算值及裂缝, 校审后不满足显示感叹号

为满足用户手工改筋的操作,程序支持池壁施工图改筋后自动校审计算值及裂缝,为便于用户 定位到具体的位置,校审后不满足显示感叹号,悬停在感叹号上时,会弹出可能的原因提示:



注: 仅在编辑钢筋时,对校审不满足项展示感叹号,关闭钢筋编辑对话框则感叹号消失;

12.10 优化池壁裂缝信息展示,立面裂缝值支持钢筋修改,并与钢筋修改结果联动 为便于用户根据裂缝调改配筋的操作,程序提供立面裂缝值直接修改钢筋功能,直接双击裂缝 值的对应配筋结果,即可手工修改钢筋,且修改完成单击空白处后,相关裂缝直接联动修改,修改 结果会关联到平面图以及水池计算书等使用该项配筋结果的功能中。


双击修改



平面图

🎱 水池计算书								
🔁 🛃 🚳								
- ☑ 浏览全部 - ☑ 设计依据		水平贯通筋 (外)	-82.0	62.2	(1)	525	1131	<b>\$</b> 128100
<ul> <li>□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □</li></ul>	(-31846, -	水平贯通筋 (内)	0.0	0.0	(0)	525	785	<b>@</b> 10 <b>@</b> 100
□───荷載计算	(-31846,	竖向贯通筋	0.0	0.0	(0)	1050	1571	<b>\$</b> 108100
<ul> <li>□ 2 材料及用量</li> <li>□ 2 地基承載力及沉降计算</li> <li>□ 2 ガル汚溢算</li> <li>□ 2 ブル汚染(約)</li> </ul>	(01016) 5841),第 1 层	起始端水平 非贯通筋 (内)	77.3	82.5	(21)	0	503	Ф 80 100 (2175mm )
		拉结筋	-	-	-	0	0	\$ 68600
□──池壁设计	CBQ3<1>,	水平贯通筋	0.0	0.0	(0)	975	1005	<b>\$ 80100</b>
	(-19371, 7830) [~] (-17360, 5617), 筆	竖向贯通筋	0.4	0.0	(21)	975	1005	<b>\$ 80100</b>

计算书-配筋

	外皮水平墙带 (中部)	74.7	92.0	(6)	0.187	0.10	
	内皮水平墙带 (中部)	15.4	-13.7	(3)	0.050	0.10	
	外皮水平墙带 (起始端)	42.7	95.2	(6)	0.123	0.10	
CBQ2,	内皮水平墙带 (起始端)	64.0	68.4	(4)	0.093	0.10	
(-31846, -35 59)~	外皮水平墙带 (终止端)	38.3	89.8	(6)	0.112	0.10	
(-31846, 5841),第 1	内皮水平墙带 (终止端)	68.6	38.4	(4)	0.092	0.10	
层	外皮竖直墙带 (中部)	44.6	-50.6	(6)	0.142	0.10	
	内皮竖直墙带 (中部)	15.9	-13.5	(4)	0.049	0.10	
	外皮竖直墙带 (顶端)	0.0	0.0	(0)	0.000	0.10	
	内皮竖直墙带 (顶端)	0.0	0.0	(0)	0.000	0.10	
	外皮竖直墙带 (底端)	12.2	-52.7	(2)	0.025	0.10	
	内皮竖直墙带 (底端)	58.4	-53.9	(3)	0.179	0.10	

计算书-裂缝

# 第十三章 风机基础设计软件

# 13.1 建模配筋新增并优化了多项实用功能

V7.1.0 版本基础配筋新增及优化了多项实用功能,比如悬挑板径向筋增加两种直径隔一布一以 及并筋形式;优化自动选筋,新增可自定义的自动选筋库,精确控制选筋规格,对于悬挑板可自动 实现隔一布一与并筋的自动选筋;优化配筋显示内容,校核更方便,比如增加实配面积和计算面积 实时显示等。

13.1.1 悬挑板径向钢筋规格设置支持两种直径隔一布一,并且支持并筋形式

实际工程设计时悬挑板径向筋会存在两种钢筋直径隔一布一的配筋形式,并且可能会存在并筋的情况,因此 V7.1.0 版本悬挑板径向钢筋规格设置增加两种直径钢筋隔一布一,以及增加并筋形式(见下图)。



见上图钢筋设置界面,悬挑板每一层径向钢筋设置均包含钢筋1和钢筋2,钢筋1和钢筋2代 表两根相邻钢筋,钢筋1和钢筋2独立设置钢筋直径,钢筋间距为相邻钢筋1和钢筋2的间距。钢 筋1和钢筋2下均包含两个直径控件,第一个直径控件代表主筋,第二个直径代表并筋,当不需要 并筋时,第二个直径控件可选择"无"。

额	1筋1			钢	筋2	
28 🔻	无	~	32	•	无	•
32 🔻	无		32	•	无	•
28 🔻			32	•	无	•
55 Čħ <b>ar</b> - 25	18	选	· 项		- 	
型号	22		m)	间	匣(mn	n)
-	25					
\$400	28		•		200	
3400 -	28 32		• •		200 100	-
3400 • 3400 • 3400 •	28 32 36 40		• • •		200 100 200	

# 13.1.2 优化自动选筋功能, 增加自定义选筋库, 可精确控制选筋规格

V7.1.0 版本优化自动选筋功能,增加自定义选筋库,可精确控制选筋规格。悬挑板径环向配筋和空腔构件配筋均优化了自动化选筋。

首先介绍自定义选筋库,选筋库界面见下图。由于不同部位选筋规格会有差异,因此悬挑板、 牛腿、侧墙、地下室底板分别设置钢筋级配库。

新航级配库               提接方格网式               最挑板               書               書               書               書               #               #               #               #             #	空腔配筋	模型	<b>2</b> 1计算	工程 统计	】 量 方 H	<b>1</b> 案对	比				
基础配筋				基础计	算						
钢筋级配库											×
悬挑板 牛腿 侧墙 地下室底板											
钢筋级配参数	径向筋线	<b>汲配表</b>		环向旗	新级 <b>西</b> 路	ŧ.	径向隔	布级配	表——		
直径范围(最小值) 12 🗸 (mm)	直径	间距	^	直径	间距	^	钢筋1	钢筋2	间距	^	
	25	1.5		22	100		25	22	1.5		
	25	1.8		22	150		25	25	1.5		
径向优选直径(逗号分开)(mm)	25	2.0		22	200		28	25	1.5		
25,28,32	28	1.5		25	100		28	28	1.5		
环向优选直径(逗号分开)(mm)	28	1.8	- 1	25	150		32	28	1.5		
22,25,28	28	2.0		25	200		32	32	1.5		
	32	1.5		28	100		32	36	1.5		
径向筋间距范围(语号分开)(°)	32	1.8		28	150		25	22	1.8		
1.5.1.8.2.0	32	2.0		28	200		25	25	1.8		
	12	1.5		12	100		28	25	1.8		
100,150,200	12	1.8	~	12	150	¥	28	28	1.8	¥	
生成钢筋级配表	插入行	删除	衍	插入行	i MMA	貁	插)	\行 册	顺行		
确定		取消									

以悬挑板配筋选筋库为例(见下图),包括钢筋直径和间距参数控件,用于生成级配库,以及级 配库展示控件。

直径范围(最小值) 12 ∨ (mm) 直径范围(最大值) 32 ∨ (mm) 径向优选直径(逗号分开)(mm) 25,28,32 环向优选直径(逗号分开)(mm)	直径 25 25 25	间距 1.5 1.8 2.0	^	直径 22 22	间距 100 150	^	钢筋1 25	钢筋2 22	间距 1.5	^
直径范围(最大值) 32 (mm) 径向优选直径(逗号分开)(mm) 25,28,32 环向优选直径(逗号分开)(mm)	25 25 25 29	1.5 1.8 2.0		22 22	100 150		25	22	1.5	
径向优选直径(逗号分开)(mm) 25,28,32 环向优选直径(逗号分开)(mm)	25 25	1.8 2.0		22	150					
径向优选直径(逗号分开)(mm) 25,28,32 环向优选直径(逗号分开)(mm)	25	2.0					25	25	1.5	
25,28,32 环向优选直径(逗号分开)(mm)	20			22	200		28	25	1.5	
环向优选直径(逗号分开)(mm)	28	1.5		25	100		28	28	1.5	
	28	1.8		25	150		32	28	1.5	
22,25,28	28	2.0		25	200		32	32	1.5	
	32	1.5		28	100		32	36	1.5	
径向筋间距范围(逗号分开)(*)	32	1.8		28	150		25	22	1.8	
1.5,1.8,2.0	32	2.0		28	200		25	25	1.8	
环向筋间距范围(语是分开)(mm)	12	1.5		12	100		28	25	1.8	
	12	1.8		12	150		28	20	1.0	
1.5,1.8,2.0 环向筋间距范围(逗号分开)(mm)	32 12 12	2.0 1.5 1.8		28 12 12	200 100 150		25 28 28	25 25	1.8 1.8	

介绍控件参数之前首先需了解级配库归类,悬挑板级配库分为径向筋级配库、环向筋级配库、 径向筋隔一布一级配库。其中前两个级配库分为优选钢筋组和非优选钢筋组,优选钢筋组为灰色背 景,不支持新增和删除,非优选组可删除、新增;径向筋隔一布一级配库则不再区分优选和非优选, 可以新增或删除。

径向筋级配库、环向筋级配库通过控件参数生成规则为:通过径向优选直径和环向优选直径与 间距范围全组合生成优选钢筋组;通过直径范围(最小值~最大值)抠除优选直径后与间距范围全组 合生成非优选库。

径向筋隔一布一级配库通过控件参数生成规则为:径向优选直径控件中的每一个直径,与同直 径和间距范围全组合,与小一级直径和间距范围全组合。

(引申)当存在有优选钢筋组和非优选钢筋组时,自动选筋规则为:

步骤 1: 先从优选直径中找出最接近计算面积的间距的实配钢筋,然后判断误差值是否在 10% 以内,若在 10%以内则选优选直径;若大于 10%,记录下优选的实配面积值,并进行步骤 2。

步骤 2: 选非优选最接近计算面积的实配钢筋,判断是否误差值是否在 10%以内,若在 10%以 内,则选最接近计算面积的实配钢筋;若大于 10%,记录下非优选的实配面积值,并进行步骤 3。

步骤 3:此时优选和非优选两个方案都选出了实配钢筋,且都有实配面积值。比较这两种实配钢筋的面积差。当面积差在计算面积的 5%以内,则取优先得到的实配钢筋,否则取非优选的实配钢筋。

牛腿、侧墙、地下室底板级配库生成原则同悬挑板。

选筋级配库设置完成后便可进行自动化选筋,同样以悬挑板自动选筋为例,悬挑板钢筋设置界 面见下图。

自动选筋之前首先手工设置径向筋层数和环向筋分段数,点击"自动选筋"按钮即可根据级配 库完成自动选筋,选筋完成后会进行弹框提示,如计算配筋过大级配库无法覆盖时也会给出相应提 示信息。

悬挑板径向筋选筋时提供"可隔布"、"可并筋"勾选项。

当勾选"可隔布"时,自动选筋时级配库使用"径向隔布级配表",此级配表无优选和非优选区别,选筋时根据计算面积在所有组合中取面积最接近的钢筋规格;不勾选时,自动选筋时级配库使用"径向钢筋级配表",此级配表包含优选组和非优选组,选筋规则见上文。

"可并筋"为隔布和非隔布的附加状态。当勾选"可并筋"时,自动选筋优先按非并筋在级配 库中检索,如果级配库中钢筋无法满足,则激活并筋状态,选筋原则为级配库中个钢筋规格面积*2, 再进行自动选筋,因此如自动选筋出现并筋方式,则并筋直径和主筋相同。

多是挑板配筋															
<u>(224100</u> (284200 (28451.32(0)#1.50) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55) (28451.32(1)#1.55)	) 01.50° 2101.50° 理=4.000							分段半日			<u>c22</u>	1100	(3862)		(NE):32(0)#1 (回路2-32(32)#
谷向西路															
□□□□000	位置	层号	型号	1	钢	筋1		钢	防2	间跟	Ē(°) 5	分段长(m)	实配面积(酮	記筋率)	要求面积
□ 坂府设里第二层公向路	- <b>--</b>	第一层	HRB40	0 -	32 🔻	无 •	32	2 -	无·	• 1.8	00	6.400	台柱边:9710	(0.3603)	4200
	底凹	第二层	HRB40	0 🔻	32 🔻	无,	32	2 🔻	无·	• 1.5	00	4.000	分段处:3160	(0.1588)	3099
底面双层配筋间距(mm) 58	顶面	第一层	HRB40	0 🔻	32 🔻	无,	32	2 🔻	无	• 1.8	00	6.400	台柱边:4414	(0.1622)	4200
顶面双层配筋间距(mm) 0															
i	说明:	1.底面径 4.配筋面	向配筋分 动积下方的	}段长) 的单元	寛控制 格,分	钢筋的锚 别表示台	i固∜ ∋柱ì	£度;2 力、第	.钢筋1 第二层征	Ⅰ、 <b>2</b> 下的 圣向筋ù	9第二 5处的	列均表示; 酉筋面积;	弁筋; 3.间距为	相邻钢筋	1、2的间距)
杯向酉游	位置	层号	分段号	丑		直径(r	nm)	间服	₹(mm)	分段	≝径(r	n) 实配i	面积(配筋率)	要求面积	8
□板底设置第二层环向筋		,2.5	1	HRB4	400 -	28	+		200	7.	250	307	79(0.1380)	3506	
] 板顶设置第二层环向筋	底面	第一层	2	HRB4	400 -	22	-		100	4	050	380	)1(0.1409)	4200	
版底第一层环向筋分段数 2 2			1	HRB	400 -	28	-	1	200	7.	250	307	79(0.1348)	3506	
版顶第一层环向筋分段数 2 ~	顶面	第一层	2	HRB4	400 -	22	-		00	4	050	380	)1(0.1383)	4200	
															_
□□并筋 □□隔布 自动洗筋	保存	洗筋											1	确定	取消

空腔构件选筋规则与悬挑板一致,不再展开说明,空腔构件配筋界面见下图。

🖗 混塔	基础空	腔下的	配筋															×
		)10@	1.	20			D40@1.	<u>. 9</u> 0										
									<u> </u>	25@	<u>150</u> . (	)()						
										25	@1 <u>50</u> .	00	)					
一空腔下	底板酉	筋							便	墙配	筋							
位置	型	号	直	径(mm	) 间	]距(mm)	实配面积mm2(配筋率%)	计算面积(mm2)	4	位置	型号		直径(m	nm)	间距(°)	实配面积mm2(配筋率	^{II} IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5
底面	HRBF	400 🔻	-	25 -	•	150	3194(0.98)	1142	3	外侧	HRB500	-	10	-	1.2	23562(0.05)	103154.19	11
顶面	HRBF	400 🔻		25 -	•	150	3194(0.87)	600	1	内侧	HRB500	•	10	-	1.2	23562(0.05)	103154.19	1
牛腿配名	筋 称 乏力筋	型 ⁴ HRB5(	룩 00 ·	 ▼4	론(mr 0	m) 间距( ▼ 1.9	<ul> <li>&gt;) 实配面积mm2(配筋率)</li> <li>9108(0.37)</li> </ul>	6) 要求面积(mm 40683	2)		自动选筋			保存	<b>F选筋</b>	确定	取消	

# 13.1.3 增加实配面积和计算面积实时显示

为更方便的校核选筋结果, V7.1.0 版本增加实配面积和计算面积实时显示功能, 当实配钢筋不满足时会显红。

一径向配筋一

						_		_						_		
☑ 板底设置第二层径向筋	位置	层号	型号	+	ŧ	网角	防1			钢筋2		间距(°)	分段长(r	n) 实配面积(翻	配筋率)	要求面
□ 板顶设置第二层径向筋	庐面	第一层	HRB40	• 0	28	r.	无	-	32	<b>▼</b> 无	•	1.800	6.400	台柱边:9193	(0.3411)	420
	780144	第二层	HRB40	• 0	32	r.	无	-	32	<b>▼</b> ₹	-	1.500	4.000	分段处:2790	(0.1402)	309
底面双层配筋间距(mm) 58	顶面	第一层	HRB40	• 0	28	r	无	•	32	<b>▼</b> 无	-	1.800	6.400	台柱边:3897	(0.1432)	420
顶面双层配筋间距(mm) 0																
	」 治明・	1 底面忽	向两路华	船长	<b></b> 宦坛:	a lên	网络希白尔	锚尺	a⊬t	<u></u> 查•2 词	新 新 1、	2下的第	一列均束:	5 兰筋: 3 间55米	加切合的	1. 2 <b>6</b> 51)
	60-91-	4.配筋面	品目(1,5)/ 面积下方的	9单元	格,	518 分列	·加加 引表示	台村	コル, 主边	、 第二	気径	向筋边处	—————————————————————————————————————	ц; ,	лыкралдо	
环向西路																
	位置	层号	分段号	₫	胆룩		直径	(mr	n)	间距(m	ım)	分段半径	(m) 实	配面积(配筋率)	要求面积	R
」			1	HRB	400	-	28		-	200		7.250	) :	079(0.1380)	3506	
□板顶设置第二层环向筋	底面	第一层	2	HRB	400	-	22		-	100		4.050	) :	801(0.1409)	4200	
版底第一层环向筋分段数 2 ~			1	HRB	400	-	28		-	200		7.250	) :	079(0.1348)	3506	
版顶第一层环向筋分段数 2 🗸	贝田	第一层	2	HRB	400	-	22		-	100		4.050	) :	801(0.1383)	4200	
空腔下底板配筋								- (D)	時間	節						
位置 型号 直径(mm) 间距(mm)	实配面积	Rmm2(配創	昉率%) 计	算面积	?(mm2	:)	_	1	立置	型	3	直径(mm	) 间距(°) 🗄	实配面积mm2(配筋)	率%) 要求	面积(mm
底面 HRBF400 🔻 25 💌 150	3	194(0.98)		114	42			3	州则	HRB50	• 0	10 -	1.2	23562(0.05)	10	3154.19
顶面 HRBF400 ▼ 25 ▼ 150	3	194(0.87)		60	0			F	内侧	HRB50	• 0	10 -	1.2	23562(0.05)	10	3154.19
牛腿配筋	_					_	7									
名称 型号 直径(mm) 间距(*	) 实配面	取mm2()	記筋率%)	要求面	軜(mr	m2)	)			自动选择	5	保	存选筋	确定		取消
牛腿受力筋 HRB500 ▼ 40 ▼ 1.9		9108(0.3	7)	4	0683						-	14		1012/142		10011

# 13.2 建模

# 13.2.1 提供专用菜单进行工程量统计

V7.1.0版本增加工程量统计功能,提供专用菜单和文本统计结果,可输出土方量、混凝土方量、

# 钢筋用量统计以及计算过程。

			超しません		<b>行设计</b> □		十月月 人		⊡ Tal	_			
<u> 上</u> 計展基础 常规	】 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	加め	♀	焊接方格网式	易挑板	空腔配筋	「構型计算	工程量 方	<b>2</b> 7 室对比				
				间接钢筋	径环向配筋			统计					
	基础	连接		基础能	筋			基础计算					
	おけけ具予											- U	
🛃 🛃	🖏 🔅												
	部 要参数									個岔	田島		^
-ر7	方量									初机	用 里		
	凝土方量 筋用量	1	<b>\$钢筋</b> 月	目量汇总	•								
			感力物效	日母约为	-67 4	1.							
			又万种剧	いの、面もり入りて劇	1版总量-07.4	:1t		钢筋位置			工程量明细(t)	工程量汇总(t)	
									底	節径向	15.22		
									顶面	面径向	7.49		
						悬	兆板		底面	缸环向	7.61	36.40	
									顶面	缸环向	6.08		
								侧墙			0.67	0.67	
								牛腿			19.49	19.49	
						空心	底板		ŧ	反底	5.43	10.86	
			= 1.0. Jr 1						ť	反顶	5.43		
		之	<b>悲挑</b> 极银	前用量									
			5.田径回	的历用重									
			第一层底	面径向钢筋	的质量m _{底面}	径向1=7.]	13t						
			=第二层)	底面径向钢角	新的质量m _e	面径向2=8.	.08t						
			底面径向	钢筋的质量	m在面径向=mr	e面径向1+m	底面径向2=	7.13+8.0	8=15.2	2t			
		<											~
<u> </u>		1.											

# 13.2.2 增加锚索位置示意图、基坑开挖示意图

为便于理解和检查, V7.1.0 版本增加锚索位置示意图、基坑开挖示意图。





# 13.2.3 增加方格网间接钢筋中心线与塔筒槽中心线对齐功能

局压设计时焊接方格网片中心应与局压作用中心一致,以前版本调整塔筒凹槽或锚板尺寸后, 需要手工调整方格网位置,V7.1.0版本增加自动对中功能。下图为混塔基础示例。

	φ		Д		R		12		
H4ć	钢筋级配库	焊接方格网式	悬挑板	空腔配筋	模型计算	工程量	方案对比		
		旧接钢筋	谷外内配筋			统计 甘和以上符			
Т	🕋 恒接方格	本 4 年 1 年 2 年 1 年 2 年 1 年 2 年 1 年 2 年 1 年 2 年 1 年 2 年 2	初 Madast 入			垄吨计算			
		M31-VIH13578780385	\$2,483/1						~
					-11600				
				∠≁κ∠-	-11000			le	_
							L		
						混凝土类	型	牛腿顶部混凝	₹±
						钢筋型	5	HRB400	-
		D=800	0		径向	钢筋直径	df(mm)	20	•
					径向	的钢筋间	€s1(°)	2.0	_
	/				环向	钢筋直径	df(mm)	20	-
		51=2.0*		$\mathbf{N}$	环向	钢筋间距	s0(mm)	150	
		<i>I</i>	<u>50=150</u>		环向钢	筋外圈直	[径D(mm)	8000	
		4=650	•	)	环向钢	筋内圈直	[径d(mm)	6500	
		11-750		/	间接银	网筋片间	钜s(mm)	50	
	$    \rangle$				间	接钢筋片	<b>漫数</b>	5	
					方格	的长度	(mm)	750	
		192-114			方相	的长夏	2(mm)	22777	
		2820116	0.0		117	方向钢筋药	数量n1	6	
					127	间钢筋	数量n2	180	
					自动对	ф	确定	取消	Í

# 13.2.4 增加方格网间接钢筋布置厚度自动调整功能

局压设计时焊接方格网片布置厚度需满足规范要求,V7.1.0 版本在保存焊接方格网片配筋时会 自动检查是否满足规范要求,如不满足会进行弹框提示,并可自动调整层数到满足。下图为混塔基 础示例。



# 13.2.5 增加常用钢绞线公称直径和面积自动填写功能

V7.1.0 版本在预应力锚索设置对话框增加"钢绞线规格"按钮,点击即可弹出常用的钢绞线规格,双击所需的规格即可将公称直径和面积自动填入。

	钢绞线尺寸及公称截面面积	į	参数类型	参数值
钢纹线结构类型	钢绞线公称直径(mm)	羽绞线公称截面面积(mm2)		
	6.2	19.8		体外预应力锚索
	6.5	21.2	基础顶部锚索分度圆半径r1(mm	3500
1+2/	8.6	37.7	供去进用进入在周半级r2(mm)	4000
1~3(二版)	8.7	38.6	· 曲条曲闾狮刀度阎十1至12(mm)	4000
	10.8	58.9	锚索张拉控制应力(MPa)	1280
	12.9	84.8	锚索孔道个数(个)	40
	9.5	54.8		
	11.1	74.2	·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·	110
	12.7	98.7	钢绞线公称直径(mm)	12.7
1*7(十四)	15.2	140.0	钢绞线公称横截面积(mm2)	98.7
	15.7	150.0		
	17.8	191.0	钢绞线极限强度fptk(MPa)	1860.0
	18.9	220.0		
	21.6	285.0		

# 13.2.6 增加根据《海上风电场工程风电机组基础设计规范》进行高强灌浆料强度 定义

V7.1.0 版本增加根据《海上风电场工程风电机组基础设计规范》进行高强灌浆料强度定义添加。 添加时首先选择"新增高强灌浆料",然后设置灌浆材料标准件的抗压强度、抗拉强度、材料系数, 之后点击"增加混凝土"按钮即可完成添加。

🐠 基础常规	观参数输入					×	
🞯 新增混凝土强度							×
混凝土强度等级	fck(N/mm2)	ftk(N/mm2)	fc(N/mm2)	ft(N/mm2)	Ec(×10^4N/mm2)	Efc(×10^4N/mm2)	^
C35	23.40	2.20	16.70	1.57	3.15	1.40	
C40	26.80	2.39	19.10	1.71	3.25	1.50	
C45	29.60	2.51	21.10	1.80	3.35	1.55	
C50	32.40	2.64	23.10	1.89	3.45	1.60	
C55	35.50	2.74	25.30	1.96	3.55	1.65	
C60	38.50	2.85	27.50	2.04	3.60	1.70	
C65	41.50	2.93	29.70	2.09	3.65	1.75	
C70	44.50	2.99	31.80	2.14	3.70	1.80	
C75	47.50	3.05	33.80	2.18	3.75	1.85	
C80	50.20	3.11	35.90	2.22	3.80	1.90	
新増混凝土类型 新増高遅灌浆料         <	一灌浆料强度 标准抗压强 标准抗拉强	参数 度(MPa) 100 度(MPa) 20	材料系数	[ 1.2	表格编辑 增加混凝土 删减混凝土	确定	Ŧ
新增混	持力层粘聚力( 凝土	C(kPa)	3.10				

添加的定义中高强灌浆料的抗压强度标准值、抗拉强度标准值、抗压强度设计值、抗拉强度设计值会根据设置的参数按《海上风电场工程风电机组基础设计规范》第12.4.4条自动计算。

## 13.3 计算

## 13.3.1 牛腿增加按《水工混凝土结构设计规范》进行设计

以前版本牛腿按混凝土规范进行设计, V7.1.0 版本增加按《水工混凝土结构设计规范》进行设计的功能。

见下图,常规设置对话框中点击"选择规范"按钮,即可弹出牛腿设计规范选择对话框,支持国标混凝土设计规范和水工混凝土结构设计规范,水工规范下需设置结构系数γ_d和受力钢筋配筋量 调整系数 β_s。



## 13.3.2 局压验算时考虑结构重要性系数

V7.1.0版本进行局压验算时会考虑结构重要性系数 γ0。

# 13.3.3 局压验算时锚板采用净抵抗矩计算

V7.1.0版本钢塔基础进行局压验算中压应力计算时,采用锚板净抵抗矩计算。

□*(D ⁴ 上锚板的截面堆拾街=	上外圈 ^{-D4} 上内圈 ⁻ⁿ 锚栓*D ⁴	2*∏*D ² 鈕栓孔*0.25*X锚栓
工作田们次口订准3、回113,376,7日平工120-	32*D上外圈*10 ⁹	□D上外圈*1000
即上锚板的截面抵抗矩₩上板= ^{∏*(}	$\frac{(4650^4 - 3890^4 - 188*51^4)}{32*4650*10^9} - \frac{2*\Pi*5}{4}$	1 ² *0.25*474.32 4650*1000=4.62m ³

### 13.3.4 增加超限信息文本输出

V7.1.0 版本增加超限信息统一输出功能,超限文本中包含所有超限信息统计,超限信息来源于整体计算书。



# 13.3.5 优化有限元配筋下对话框简图显示名称

V7.1.0版本优化有限元配筋下对话框中简图显示名称,使名称与配筋形式匹配。



13.4 施工图

13.4.1 新增钢筋三维显示功能

V7.1.0 版本施工图模块增加基础钢筋三维显示功能,三维显示细节全面丰富,提供显示部位控制、扇形显示范围控制参数,可灵活控制显示内容,并提供三维动画模拟功能。



部分细节展示见下图。







# 13.4.2 基础施工图增加读取参数提示

基础施工图丰富的绘图参数,部分参数可一键读取结构设计中的内容,为方便校核读取的参数 信息,V7.1.0版本施工图模块在执行读取建模以及计算数据后,会弹出读取内容的文档。

図         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2)         (2) <th>×</th>	×
WIE 学校(22) 10.20 三世 学校(22) 10.20 三世 学校(22) 10.00 三世 学校(5) 94編(5) 他式(5) 書面(7) 種類(4) 原用編纂 扩展基础 周囲基础 打开 基本学校(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5) 24(5	^
<u>期用編編 計量構成 現場基礎 打开 工業</u> 型面に 型面にて <u>1余野</u> 変合変面上がない。11.0	^
基本参對: 	
陸端穴→診療: 魚合麻面半径R(n): 11.0	
基本参数最供版路站自住取時 補給设计 下谱板支撑 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
基础尺寸参数	
承白属面半径R(m) 11 凹層小半径R3(m) 2250 算証拠信(再)度14(nm): 150 音い地層(目)度14(nm): 150 音い地層(目) 目)	
自社半径R1(m) 3.3 凹槽内半径R4(m) 1300 混動正常に2010 3.7 現長工法(原母院: c20 二は上下107	
承台底板州協高度 H1 (m) 0.9 凹槽深度 H5 (mm) 280 底部径向拥筋: C3201.5	
济台銘板授台墨度 H2 (m) 1.9 凹糠底部垫层厚度 H6 (mn) 200 底部环向相衡 5, 02281.5 底部环向相衡 5, 1582.	
底部FOP開始: 5220150 市営力用: 5132	
には1997年19月1日	
▲ 44型気度度 H4 (mm) 150 市地区(1998) 後 3 € 5. (mm)	
基础理案Hd (m) 3.4 读取建模以及计解数据 医结肠不同纤维。C220150	
温泉于绿南等级 网络	
·····································	
□ 柏屬础	
布置范围: 4023 台柱配筋:	
螺栓核心区钢筋设计	
外通行算法(2003):2510 内層右算法(2013):1700	
(内徴を行う)中で1,50%(の)に、2011 内(数)(10)(10)(10): 2011 内(数)(10)(10)(10): 2011	
·//增調//////////////////////////////////	
H=0255X 上 接板宽度 (sma): 380	
▶ 「細板瓦度 (sm): 380 高强運送参数	
滞退十强度学级。500 瀑发槽宽度 (an): 430	
選定者博家(ma):80 現在「選定者外(印度家庭(ma):15	
温波播入时度改变1,201:15	
	~
第1行、第1列 100% Macintosh (CR) ANSI	

# 13.4.3 完善绘图细节

V7.1.0 版本完善了部分绘图细节,如径向分段钢筋底面第二层考虑锚固长度、修正螺栓大样图标注尺寸。

# 第十四章 钢制储罐地基基础设计软件

# 14.1 基础布置增加桩刚性角校核功能

为完善立式储罐桩基的桩计算相关功能,7.1 版本增加桩刚性角校核功能,当相邻桩满足要求时,点击按钮,弹出"全部满足桩长刚性角要求":



刚性角满足

当相邻桩的刚性角超过 45°限值时,点击按钮,程序弹出文本,记录哪些桩不满足要求,方便用户查验:



刚性角不满足桩

# 14.2 基础构件删除增加对独基、承台的支持

为满足用户自行修改球罐等类型的基础形式,程序新增对独基、承台等基础构件删除功能,便 于用户手工修改基础类型:



# 14.3 增加基础的构件查找功能

之前版本对于模型中有多个同类型基础构件时,难以判断出每个构件的具体指代对象。为便于 用户定位到具体的基础构件,程序在【构件布置】的【构件查询】中,新增基础构件,可以在构件 类型栏输入需要查询的构件编号或构件 ID,选择对应的查询类型后,该构件高亮显示:



基础编号单构件查询



基础 ID 单构件查询

也可以选择构件类型框中的类型,选中该类型后,模型中对应显示该类型的所有构件的编号与 构件 ID:



基础构件编号与 ID

# 14.4 增加对地基梁下布置桩的支持

之前版本前处理没有处理地基梁下布桩的情况,地基梁和桩都存在刚度,基础的反力计算结果 也是异常的。所以 7.1 版本,程序增加对地基梁下布置桩的支持,当地基梁下存在桩时,仅生成桩 弹簧,不生成地基梁的天然地基土弹簧:



# 14.5 地基梁梁墙划分协调

为之前版本前处理没有处理地基梁与相连的墙之间的网格划分问题,导致墙下地基梁节点划分 混乱。所以 7.1 版本,程序优化地基梁网格划分,采用墙梁协调的方式处理,即墙下地基梁始终与 墙共节点,且地基梁采用基础的网格划分形式:





# 14.6 支持卧式设备基础的支墩设计结果查看

为方便用户进行卧式设备的支墩设计,程序放开卧式设备支墩的构件信息查看,内容包含几何 材料信息、标准内力信息以及构件设计验算与组合内力等常见设计结果:



支墩构件信息查看

# 第十五章 石化设备基础设计软件

# 15.1 支持地质资料的输入功能

为完善石化基础沉降计算的相关功能, 7.1 版本增加地质资料输入功能, 包含打开地质资料文件、保存 DWG 图、导入孔点资料以及一系列的孔点编辑的内容:



地质资料

地质资料输入的步骤一般应为:

(1) 打开或者是新建一个地质资料工程文件(新版文件扩展名为 csv, 旧版为 dz、dzn)。

(2) 输入土层信息参数表。

(3) 点击"输入孔点"菜单,在屏幕的相应位置布置孔点。

(4) 点击"孔点编辑"菜单,编辑勘探孔点与实际不符的相关参数。

(5) 重复步骤(2)(3)(4)步骤完成地质资料输入的全部工作。

以下为地质资料各项功能详细介绍:

# 1、地质资料

地质资料数据文件名为*.csv。

### 2、新建文件

【新建文件】用于新建地质资料文件。

点击【新建文件】菜单后,屏幕弹出新建文件对话框。用户在此对话框中,指定文件的路径和 文件名称。输入文件名称时,可以带扩展名 csv,也可以不带,如果用户没有输入扩展名,软件将自 动添加扩展名 csv。如果用户在此选择一个已经存在的地质资料文件,软件将自动打开该文件。

### 3、打开文件

【打开文件】用于打开已经存在的地质资料文件。

点击【打开文件】菜单后,屏幕弹出的对话框与【新建文件】菜单弹出对话框相同。用户在此对 话框中选择已经存在的地质资料文件,注意,如果选择的文件不存在,软件将自动按照新建地质资 料文件处理。

### 4、保存为 DWG 图

【保存为 DWG 图】用于将图面中布置好的孔点图,导出为 DWG 图供用户出图或者留存使用。

# 5、合并 dwg 图

为了减少人工操作,新版本将平面图和剖面图分开进行转换。同时,地勘单位提供的原始钻孔 剖面有时为每个孔点一张 dwg 图,在进行剖面转图时,用户可以利用此功能,将多张 dwg 剖面图合 为一张。

单击"合并 dwg 图"按钮,弹出下列对话框:

_ 猫女件				
JAK XIT		_		
选择文件:			选择文件	
目标文件				
dwg版本:	AutoCad 2004 图形 (*.dwg)	-		
D:\泂li式模想	则基础\V4.0\地质资料导图\白建小模型\1.dw	a	进择文件	
		-	20 <b>1</b> 4X11	
□ 与源文作	同名			
		确定	取消	

上面选择需要合并的多张 dwg 图原路径,下面为合图导出的路径,默认为模型的根目录。

!▼ 新建文件夹					•
此电脑	名称	修改日期	类型	大小	
▶ WPS网盘	8	2021/9/6 15:14	DWG 文件	179 KB	
3D 对象	9	2021/9/6 15:14	DWG 文件	183 KB	
视频	i0 🔁	2021/9/6 15:14	DWG 文件	182 KB	
	🚰 11	2021/9/6 15:14	DWG 文件	198 KB	
	12	2021/9/6 15:14	DWG 文件	200 KB	
 	13	2021/9/6 15:14	DWG 文件	176 KB	
卜载	14	2021/9/6 15:14	DWG 文件	224 KB	
首乐	<b>15</b>	2021/9/6 15:14	DWG 文件	183 KB	
桌面	16(新)	2021/9/6 15:14	DWG 文件	238 KB	
本地磁盘 (C:)	17 (新)	2021/9/6 15:14	DWG 文件	180 KB	
,新加卷 (D:)	18 10	2021/9/6 15:14	DWG 文件	150 KB	
。题库 (E:)	19 19	2021/9/0 15:14	DWG 文件	140 KB	
新加卷 (F:)	20	2021/9/6 15:14	DWG 文件	1/1 KB	
2.测试报告 (\\1!	22	2021/9/6 15:14	DWG 文件	202 KB	
•	LL	2021/3/0 13:14	DITO XIT	LULIND	

批量选择要合并的图纸,点击"打开",再点击确定,生成合并图纸,目标文件目录下可查看导出的指定版本合并完成的 cad 图纸。

# 6、导入 DWG 图

该功能将导入平面、剖面集成到同一个按钮中,即【导入 DWG 图】:



点击该按钮后,进入导图页面,左侧构件选择列表整合:



右侧增加功能选择树:



生成数据按钮进行区分,分为平面与剖面两个单独的按钮:



平面图用于直接导入 CAD 中的孔点平面信息,剖面图用于将地勘单位提供的孔点剖面图中的 土层信息,包括土层主层号、亚层号及标高等信息导入 YJK 地质资料中,并可在孔点编辑中查看和 修改导入的结果。

在生成地勘数据时,需要遵循该原则: 必须先成功生成平面图数据后才能生成剖面数据。程序 会将生成的地勘读图数据记录在模型根目录下的"地勘 dwg 读图数据文件"文件夹中。若成功生成

<u> </u>	比电脑 > 桌面 > 协同工具转基础测试模型 >	地勘dwg读图数据文件	
^	名称 ^	修改日期 类	型
	⑤ 地勘数据.csv	2022/11/16 8:55 XL	S 工作見

了平面图数据,该文件夹中会生成"地勘数据.csv",剖面图数据会在该文件中续写:

因此,目前这种合并模式支持以下几种操作流程:

1) 平面图 dwg 与剖面图 dwg 是两张单独的 dwg 图,先在地质资料转图中打开平面图 dwg, 选取平面图图层并成功生成平面图数据后,再打开剖面图 dwg,选取剖面图图层后生成剖面图数据;

2) 平面图与剖面图在同一张 dwg 图中,打开该图后,分别选取平面图图层与剖面图图层,然 后分别进行平面图数据生成与剖面图数据生成;

3) 平面图与剖面图在同一张 dwg 图中,打开该图后,先选取平面图图层并成功生成平面图数据,再选取剖面图图层并生成剖面图数据。

# 7、土层信息参数表

【土层信息参数表】用于设定各类土的物理力学指标。

【土层信息参数表】界面如下图所示。所有参数均放开修改,用户可根据实际地勘报告增减土 层、分别输入主层号及亚层号,同时支持修改每个土层的状态参数。软件还在该界面的右下角增加 了【标准参数表】按钮,其中的内容与旧版地质资料中的【土层信息参数表】完全一致,方便用户查 询使用。

土名称	主层号	亚层号	极限桩侧 阻力(kPa)	极限桩端 阻力(kPa)	压缩模量 (MPa)	重度 (kN/m3)	摩擦角(°)	粘聚力 (kPa)	状态参数	状态参数含义	
据修改后,	是否关联系	乳点	是	是	是	是	是	是	是	是	
ί±	1	0	500.00	0.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
泥质土	2	0	600.00	100.00	3.00	16.00	2.00	5.00	1.00	(定性/-IL)	
[黏土	3	0	700.00	500.00	10.00	18.00	5.00	0.00	0.20	(含水量)	
砂	4	0	800.00	200.00	31.50	20.00	15.00	0.00	25.00	(标贯击数)	
秘	5	0	500.00	2000.00	40.00	20.00	15.00	0.00	25.00	(标贯击数)	
「风化岩	6	0	0.00	10000.00	20000.00	24.00	50.00	200.00	200000	(单轴抗压)	
<b>所鮮岩</b>	7	0	0.00	20000.00	40000.00	24.00	50.00	200.00	400000	(单轴抗压)	
柘	8	0	0.00	30000.00	50.00	20.00	15.00	0.00	25.00	(单轴抗压)	
<b>示高参数</b>										_	

土层信息参数表

土名称	压缩模量(MPa)	重度(kN/m3)	摩擦角(°)	粘聚力(kPa)	状态参数	状态参数含义
<u>真土</u>	10.00	20.00	15.00	0.00	1.00	(定性/-IL)
淤泥	2.00	16.00	0.00	5.00	1.00	(定性/-IL)
淤泥质土	3.00	16.00	2.00	5.00	1.00	(定性/-IL)
黏性土	10.00	18.00	5.00	10.00	0.50	(液性指数)
紅黏土	10.00	18.00	5.00	0.00	0.20	(含水量)
粉土	10.00	20.00	15.00	2.00	0.20	(孔隙比e)
粉砂	12.00	20.00	15.00	0.00	25.00	(标贯击数)
细砂	31.50	20.00	15.00	0.00	25.00	(标贯击数)
中砂	35.00	20.00	15.00	0.00	25.00	(标贯击数)
粗砂	39.50	20.00	15.00	0.00	25.00	(标贯击数)
砾砂	40.00	20.00	15.00	0.00	25.00	(标贯击数)
角砾	45.00	20.00	15.00	0.00	25.00	(标贯击数)
圆砾	45.00	20.00	15.00	0.00	25.00	(标贯击数)
碎石	50.00	20.00	15.00	0.00	25.00	(标贯击数)
卵石	50.00	20.00	15.00	0.00	25.00	(标贯击数)
风化岩	10000.00	24.00	50.00	200.00	100000.00	(单轴抗压)
中风化岩	20000.00	24.00	50.00	200.00	200000.00	(单轴抗压)
微风化岩	30000.00	24.00	50.00	200.00	300000.00	(单轴抗压)
新鮮岩	40000.00	24.00	50.00	200.00	400000.00	(单轴抗压)

#### 标准参数表

### 8、输入孔点

【输入孔点】用于增加新的孔点,并将孔点布置在相应的位置。

点击【输入孔点】菜单后,用户需要输入新增孔点的位置,用户可以在屏幕上鼠标左键点取相应位置,也可以在命令行输入孔点坐标(单位m)进行孔点布置。用户一次可以布置任意多个孔点, 点击鼠标右键,完成输入,如果鼠标左键点取过程中,输入键盘"Esc"键,则将取消输入孔点操作。

# 9、复制孔点

【复制孔点】用于土层参数相同的孔点布置。也可以将对应的土层厚度相近的孔点用该菜单进 行输入,然后再编辑孔点参数。

点击【复制孔点】,先选择需要复制的孔点(可以选择多个),鼠标右键结束选点,然后用户选择 复制孔点的实际插入位置完成命令。孔点生成之后,其土层与被复制孔点的土层参数相同,而不是 与土层信息参数表相同。

## 10、删除孔点

【删除孔点】用于删除多余的勘探孔点。

点击【删除孔点】,软件提示选择要删除的孔点,软件支持鼠标左键框选:用户按鼠标左键不放,移动鼠标,框选需要删除的任意多个孔点,然后放开鼠标左键,软件即可删除选中的孔点,完成删除孔点命令。

### 11、编辑孔点

【编辑孔点】用于修改与实际参数不相符的孔点参数,包括孔点坐标,土层参数等。

点击【编辑孔点】菜单后,弹出"孔点土层参数表"对话框。对话框包括孔口标高、探孔水头标高、孔口的X、Y坐标,以及土层相关的各土层物理指标参数。以上的这些参数都可修改。若想添加或删除某一层土可以使用增行或删行命令。

当前操作的孔点编号:列出了当前地质资料文件的所有孔点的编号,用户在下拉框中选择要进

行修改的孔点编号,然后进行修改其相关参数,修改的相关参数只对该编号的孔点有效,目前只支持孔口标高和探孔水头标高对所有孔点有效,选择该"应用于所有点"即可。

🍘 A	点土层参数表										×
当前	操作的孔点编号:	24	$\sim$			孔口标高	(m):	[	4.37	□用于所	有点
孔点:	坐标X(m)	79.71				探孔水头	标高(m):	[	4.37	□用于所	有点
孔点:	坐标¥(m)	8.28							増行	插行	刪行
层	寻 土名称	土层厚度 (m)	极限桩侧 阻力(kPa)	极限桩端 阻力(kPa)	压缩模量 (Mpa)	重度 (kN/m3)	摩擦角 (度)	粘聚力 (kPa)	状态参数	状态参数 含义	
1层	1-1 埴土	2.30	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
2层	1-2 埴土	1.20	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
3层	2-2 埴土	4.80	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
4层	3-0 埴土	11.20	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
5层	4-1 埴土	15.50	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
6层	4-2 埴土	21.20	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
7层	4-3 埴土	3.50	300.00	1800.00	10.00	20.00	15.00	0.00	1.00	(定性/-IL)	
日接	标高输入土层								确定	È	取消

单点编辑

孔口标高:用于计算各层土的层底标高。第一层土的底标高为孔口标高减去第一层土的厚度; 其它层土的底标高为相邻上层土的底标高减去该层土的厚度。

### 12、平移对位

【平移对位】用于整体平移地质资料孔点,使其与目标位置进行准确对位。

点击【平移对位】菜单,软件自动拾取全部孔点,然后根据命令行提示"拾取基点"点取基点位置(也可以在命令行输入坐标位置),将地质资料孔点图移到目标位置完成操作。本操作完成后,所有的孔点坐标均按照实际情况重新计算。

厚度;其它层土的底标高为相邻上层土的底标高减去该层土的厚度。

### 13、旋转对位

【旋转对位】用于旋转孔点,使其与目标位置进行准确定位。

点击【旋转对位】菜单,软件自动拾取全部孔点,然后根据命令行提示"拾取基点"点取基点 位置(也可以在命令行输入坐标位置),此基点是旋转圆的圆心,将地质资料孔点图移到目标位置完 成操作。

### 14、缩放对位

【缩放对位】用于整体缩放地质资料平面图的大小,相当于改变孔点之间的距离。

点击【缩放对位】菜单,软件自动拾取全部孔点,然后根据命令行提示"拾取基点"点取基点 位置(也可以在命令行输入坐标位置),此基点是整体缩放的基点,输入缩放比例后完成整体的缩放。

# 15、孔点剖面图

点击【孔点剖面】菜单,用户点取要生成孔点剖面的位置,一次可以选择多个位置,然后点击 右键,软件自动生成孔点剖面图。



孔点剖面图

**16、土层三维图** 绘制土层三维图:



土层三维图

# 15.2 增加基础的构件查找功能

之前版本对于模型中有多个同类型基础构件时,难以判断出每个构件的具体指代对象。为便于 用户定位到具体的基础构件,程序在【构件布置】的【构件查询】中,新增基础构件,可以在构件 类型栏输入需要查询的构件编号或构件 ID,选择对应的查询类型后,该构件高亮显示:



也可以选择构件类型框中的类型,选中该类型后,模型中对应显示该类型的所有构件的编号与 构件 ID:



基础构件编号与 ID

# 15.3石化单塔计算完毕后,若计算未通过,给出底板尺寸建议值

为便于用户调改塔式基础筏板尺寸,完成石化单塔计算后,若有不满足项,程序会根据计算结 果给出建议值,目前版本,会针对以下4项内容给出具体的建议值:



计算结果异常提示

1. 当地基承载力验算未通过时,会给出底板直径的建议修改值;

2. 当零应力区验算未通过时,会给出底板直径的建议修改值;

3. 当板厚验算未通过时,会给出底板厚度的建议修改值;

4. 当底板冲切验算未通过时, 会给出底板厚度的建议修改值。

计算原则为:

将用户输入值的两倍作为上限,按每 10mm 增量试算一次,直到计算通过为止,输出计算通过 的建议值。例如,用户输入底板直径 3000mm,地基承载力计算未通过,程序会取 6000mm 作为试 算上限,若计算到 6000mm 仍不满足要求,**则不再输出建议值**,这种情况属于建模过于不合理,说 明需要进行较大调整,如下图:



不再输出建议值提示

注:当超过两项计算结果不通过时,例如地基承载力和冲切验算均不通过时,程序给出的各个 建议值是分别计算的,两者会存在相互制约关系(如当冲切计算不通过时,按建议值增大板厚,会 增大基础自重,导致地基承载力算不过),可能出现按建议值修改一次之后仍然不通过,此时多按照 建议值调整几次即可算过。

# 15.4 支持三种石化基础的沉降计算

为满足规范计算沉降的要求,程序对三种储罐新增对应的沉降计算功能,并将计算结果在 Word 计算书中输出:

🔁 🎦								
○ 別談全部           - 日夜计依据           - 日夜计依据           - 日常软件           ● 日夜秋田合           ● 日夜秋日前           ● 日夜秋日           ● 日夜雨           ● 日夜秋日           ● 日秋日           ● 日秋日           ● 日秋日           ● 日秋日           ● 日秋日           ●	1号底板沉降计算结果 总荷载云 [F+G] (kii) :288.3 裕板底面积 (a*a) :4.0 基底上自重压力 (kPa) :0.0 墨底前加压力 (kPa) :72.1 沉降经验系教师:0.683 计算土层厚度Δ2(a) :0.3			沉降分层	计算结果			
<ul> <li>□·□·□·□·□·□·□·□·□·□·□·□·□·□·□·□·□·□·□·</li></ul>		压缩层序号	压缩模量(IIPa)	土层厚度(重)	附加应力(kPa)	土自重应力 (kPa)	压缩量(mm)	
□ 2号底板沉降计算结!		1	10.00	0.30	71.9	0.0	2.157	
□□□□=□=□=□=□=□=□=□=□=□=□=□=□=□=□=□=□=□		2	10.00	0.30	68.2	0.0	2.046	
── 2号底板土层信息		3	10.00	0.30	59.4	0.0	1.782	
⊡ ☑ 选配钢筋		4	10.00	0.30	48.8	0.0	1.463	
		5	10.00	0.30	39.1	0.0	1.173	
		6	10.00	0.30	31.3	2.6	0.938	
		7	10.00	0.08	27.2	6.5	0.228	
		8	4.48	0.30	23.8	10.2	1.592	
		9	4.48	0.30	19.5	15.9	1.304	
		10	4.48	0.30	16.2	21.6	1.084	
		11	4.48	0.30	13.7	27.4	0.914	

沉降计算

□·√浏览全部							
	1号瓜极土层信息						
				基底土	丟信息		
●□□设计资料		土层序号	土层名称	土层厚度(m)	土层重度 (km/m^3)	压缩模量(IIPa)	回弹模量 (IIPa
		1	填土	0.37	20.00	10.00	25.00
■一型底板计算		2	填土	2.04	19.10	4.48	8.96
日日は「日本社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会		3	填土	0.41	19.10	4.48	8.96
		4	填土	0.36	19.10	4.48	8.96
		5	填土	0.26	20.00	10.00	25.00
□-▽土层信息		6	填土	2.03	19.10	4.48	8.96
☑1号底板土层信息		7	填土	3.49	19.10	4.48	8.96
		8	填土	6.76	19.10	4.48	8.96
▶ ▶ 22月0日7月17日		9	填土	2.82	19.10	4.48	8.96

底板土层信息

# 15.5 调整石化塔径环向配筋及正交配筋的布置区域,增加锚固长度及搭接长度的 数据描述及相关计算

为满足石化塔基础径环向及正交配筋的布置要求,程序按照 SH3030-2009 《石油化工塔型设备 基础设计规范》 10.4.3、《高塔基础设计与计算》手册 264 页以及用户反馈对采用【正交+径环向配 筋】的情况做出改进,增加锚固长度及搭接长度的数据描述及相关计算,主要针对以下两种情况:

### 1.圆柱式基础

顶部:不配置正交钢筋,径环向钢筋从支座位置(圆筒边缘)向内伸入 La 锚固长度;

**底部**: 径环向钢筋从支座位置(圆筒边缘)向内伸入 LI 搭接长度,正交钢筋从支座位置开始配

置。





# 2.圆筒式基础



根据规范要求,圆筒式基础的底筋,需要考虑关键计算值"反弯点位置",如下图所示:

程序会选择最靠近圆心位置的反弯点作为配筋的关键控制点。

**顶部:**由于顶筋不存在反弯点,圆筒外侧为悬臂端,径向钢筋一般仅为构造配筋,因此配筋规则较为统一:径环向钢筋深入支座 La,正交区配筋配到支座位置。此方式与高塔手册相吻合:



底部:底部配筋情况较为复杂,需要分情况讨论:

1) 若所有组合底部均为全部受拉,不存在反弯点,此时配筋方式与顶筋一致,采用: 径环向钢筋深入支座 La,正交区配筋配到支座位置;

2) 若底部存在反弯点,则程序会采用所有组合中最靠近圆心位置的反弯点进行配筋,此时配筋 规则为: 径向钢筋配至反弯点位置,然后正交配筋从该位置向外配 LI 搭接长度。这里有一点需要注 意,当计算出来的反弯点过于靠近圆心,超过圆心与支座的中点位置时(2号点位),则径环向钢筋 仅配到 2号点位。




注: 在计算反弯点时,是按线性分布进行插值获取到的;

### 15.6 单塔基础支持建立多边形底板

为满足多数小尺寸塔基础均采用多边形底板+正交配筋需要,且《高塔基础设计与计算》手册中 明确指出了该种形式应用较广,所以在 V7.1版本中,程序增加了正六边形与正八边形底板的相关功 能。以下为该功能主要涉及的方面:

		基础几何	
		基础类型 圆筒式 🗸	基础顶面标高(m) 0.2
A MHORE	3	底板类型 正八边形 ~	地面标高(m) 0
┋┼(— ┼ -		圆柱(简)高(mm) 1500	底板总厚(mm) 500
		圆柱(筒)外径(mm) 2400	对边宽度(mm) 3000
		圆筒壁厚(mm) 500	
	基础顶面标高	基础材料	
<u>e</u>		混凝土强度等级 30 ~	钢筋等级 HRB400 ~
		混凝土重度(kN/m3) 25	最大选筋直径(mm) 32
	il 👘	保护层度度(mm) 40	最小选筋直径(mm) 10
		<b>底板配筋方式</b> 全正交 ──	
			-

1. 参数化建模页面修改:

如上图所示,在【基础几何及材料】页面:

- 1) 【底板类型】增加正八边形及正六边形选项;
- 2) 当选择多边形底板时,右侧【底板直径】参数变为【对边宽度】参数;
- 3) 当选择多边形底板时,【底板配筋方式】仅限使用全正交方式;
- 4) 左侧示意图会根据选择的底板形式进行改变。
- 2. 建模修改:

当选择多边形底板时,程序的展示模型会进行相应的改变:



3. 计算内容相关修改:

1) 底板自重计算

程序将根据底板形状,计算实际的底板自重。

2) 地基承载力、等效基底压力 P1P2

地基承载力根据底板形状进行正常计算;等效基底压力 P1P2 因涉及到底板半径,因此六边形、 八边形按内切圆的半径进行等效计算。

 $r_1 + r_2$ 

3) 沉降计算

程序将根据底板形状,计算实际的沉降值。

4) 计算书

基本信息、底板厚度验算的相关文字描述会根据底板形式进行调整。

4. 施工图内容相关修改:

1) 图面

平面图及配筋图根据筏板设置支持正多边形绘制,实际底板形状、底板标注、剖切符号位置、 底板正交钢筋及封边钢筋形式等均按照多边形实际联动绘制;





2) 钢筋表

钢筋表按照正多边型特点新增部分内容,以下图为例:①4、5 号钢筋的单根长度范围以及总重 根据实际用量进行单独计算;②6、7 号钢筋,重新绘制钢筋形状示意图,计算单边长度、总长及实 际用量。

			教量		學技	)特領筹量 (kg)		悲朝蕭量 (吨)
		钢筋表			2	92.5		0.6
序号		钢筋形状		直径	教量	单根长度(m	nm)	总重量(kg)
1	<u>a</u>	1920	_	14	120	2020		293.30
0		Since the second			13	7290		37.43
3		4650		8	13	4650		23.88
4	420	1230~2920	420	10	60	1230~29	920	119.57
5	_	1230~2920		10	60	1230~29	920	88.48
6		di C		10	1	9680		5.97
0		1210		10	4	9680		23.89

6	1690	10	1	10140	6.26
Ī	1690	10	4	10140	25.03

# 第十六章 地铁

## 16.1 平台建模

## 16.1.1 增加快速删除地连墙功能

在 Y-subway7.0.0 之前的版本中,可以通过【地连墙与压顶梁】功能快速布置地连墙,但是要 是想删除地连墙,则需要用户在【轴线网格】功能中通过删除网格来快速删除已布置的地连墙。为 了提高用户的操作效率,在 Y-subway7.1.0 版本中增加了快速删除地连墙的功能,具体操作如下图 所示:



选择【地连墙与压顶梁】中的删除功能



#### 选择要删除的地连墙

如上图操作所示,选择要删除的地连墙后,包括地连墙所在的轴线网格、地连墙以及地连墙上 生成的压顶梁都会一块被删除。

注意:

1、选择要删除的地连墙时,默认的选择方式是光标方式,可以通过 tab 键切换其他选择方式, 例如:轴线、窗口、围区。当地连墙和地连墙上生成的压顶梁宽度一致时,压顶梁的图层置于地连 墙图层之上,用光标方式选择地连墙会出现选不上的情况,这时就建议用户切换其他选择方式选择 要删除的地连墙。在支持默认的光标选择方式的同时,程序也支持直接左键框选或者反选的操作方 式,也可以提高操作效率;

2、快速布置地连墙且设置的地连墙墙底标高低于底层墙底,选择底层的外墙布置时,程序会自动生成一个标准层来布置低于底层墙底的地连墙,如下图所示:



选择底层的外墙布置后的楼层组装(以地连墙墙底标高低于底层墙底 2m 为例) 因此快速删除地连墙后,要注意及时调整楼层组装中的组装方案、层底标高和地下室层数,尤 其是层底标高,这样才能保证生成的水土压力和侧墙约束是按照正确的标高生成;

3、快速删除地连墙需要每层都执行删除操作。

## 16.2 设计结果

## 16.2.1 完善剖面结果存在的问题

在 Y-subway7.0.0 之前的版本中,【剖面结果】的内力简图或者配筋简图会存在个别位置与计算 书中的结果不对应的情况, Y-subway7.1.0 版本修复了这个问题。



# 第十七章 基坑支护设计软件

## 17.1 平台建模

## 17.1.1 增加型钢水泥土墙的示意

在之前的版本中,在支护定义的预览图和二维以及三维计算的计算书中,没有型钢水泥土墙的平面示意图,7.1.0版本中增加了型钢水泥土墙的平面示意,如下图所示:

支护定义		
	基本信息	
	名称	内容
	日 基坑参数	
	支护类型	3.型钢水泥土墙
	基抗深度h(m)	6.00
+	日 支护参数	
	刚度折瑊系数K	0.85
	嵌固深度(m)	5.00
	墙顶标高(相对于地面标高)(m)	0.00
	截面类型	26 型钢
	型钢名	HW400X400
	型钢布置形式	1.密插型
	水泥土墙厚度(mm)	800
	水泥土墙平均重度(kW/m3)	22.00
	相邻搅拌桩中心间距s(m)	1.00
	水泥土抗剪强度调整系数	1.60
	水泥土抗剪强度标准值(MP a)	1.00
	日 其它参数	
8	放坡级数	0
vi i	超载个数	0
	□ 冠梁	

	坡号	台覽	ភ្ញ(m)	坡高(m)	坡度系数						
	超载序号	类型	超载值	(kPa, kN/m)	作用深度(m)	作用宽度(m)	距坑边距(m)	形式	长度(m)		

确定 取消

密插型平面示意图

支护定义													×
	基本信息												
	夕称						内容						
	日其信参表	r					114						
	支护类型						3. 型钢水泥土	高					
	基抗深度	h(m)					6.00						
	日 支护参数	k.											
	刚度折薄	系数K					0.85						
	嵌固深度	(m)					5.00						
	墙顶标高	(相对于:	也面标高)	) (m)			0.00						
	截面类型						26 型钢						
	型钢名						HW400X400	-					
	型钢布置	形式					2.插一跳一型						
	水泥土墙	厚度(mm)	(1 1 )			_	800						
	水泥土垣	半均重度	(kN/m3)				22.00						
	相邻现托	他中心间	迎らい。 地のマンキル				1.00						
	小泥工切	剪理度调 前程度提	全杀剑 法信/mp.	.)			1.60						
	小兆工机	\$35里)支1小 F	い田田 (nur s	1/			1.00						
	1 共已多数	τ.					0						
	招载个数						0						
<b>↓</b> □													
ਹੋਰ .													
	坡号	台湾	旣(m)	坡高(m)	坡度系数								
للمحل													
ja.saj	I THE PARTY OF		(Then by										
1 1	超载序号	类型	超载值	((kPa, kN/m)	作用深度(m)	作用宽度(m)	距坑边距(m)	形式	长度(m)				
										Г	确定	T	即消

# 插一跳一型平面示意图

×

支护定义 基本信息
 名称
 日 基抗会教
 支护会型
 支抗交距(
 支护会型
 支抗交距(
 支护会型
 支护会型
 基抗实距(
 支护会者
 附度折减系数
 附面示标高(相对于地面标高)(
 和面类型
 型料名
 型料名
 型料名
 型料名
 型料名
 型料名
 型料名
 型料名
 和资提并检中心词距≤(
 水泥土墙厚度(
 mo)
 水泥土墙厚度(
 mo)
 水泥土坑剪强度(
 和系数
 水泥土坑剪强度(
 和系数
 水泥土坑剪强度(
 和系数
 水泥土坑剪强度(
 和表数
 和级
 和
 和级
 和级
 和级
 和级
 和级
 和级
 和
 和级
 和级
 和级
 和级
 和
 和级
 和级
 和
 和级
 和级
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 和
 基本信息 内容 3. 型钢水泥土墙 6. 00 0.85 5.00 0.00 26 型钢 <del>- 200</del> 3.插二跳一型 1200 22.00 1.00 1.60 1.00 0 0 ́н н 台宽(m) 坡号 坡高(m) 坡度系数 1 20 超载序号 类型 超载值(kPa, kN/m) 作用深度(m) 作用宽度(m) 距抗边距(m) 形式 长度(m) 确定取消

插二跳一型平面示意图



计算书中的平面示意图

## 17.2 设计结果

## 17.2.1 完善锚杆极限抗拔承载力标准值 Rk 计算

7.1.0版本在计算锚杆极限抗拔承载力标准值 Rk 时,对锚固段长度的取值增加了对理论直线滑动面以外的长度判断,规范如下图所示:

$$R_{\rm k} = \pi d \sum q_{\rm sk,i} l_i \tag{4.7.4}$$

**4.7.5** 锚杆的非锚固段长度应按下式确定,且不应小于 5.0m (图 4.7.5):

$$l_{\rm f} \ge \frac{(a_1 + a_2 - d\tan\alpha)\sin\left(45^\circ - \frac{\varphi_{\rm m}}{2}\right)}{\sin\left(45^\circ + \frac{\varphi_{\rm m}}{2} + \alpha\right)} + \frac{d}{\cos\alpha} + 1.5$$

$$(4.7, 5)$$

式中: li---锚杆非锚固段长度 (m);

α——锚杆倾角(°);

- a1——锚杆的锚头中点至基坑底面的距离(m);
- a2 基坑底面至基坑外侧主动土压力强度与基坑内侧被
   动土压力强度等值点O的距离(m);对成层土,当
   存在多个等值点时应按其中最深的等值点计算;
- d——挡土构件的水平尺寸 (m);
- φm——O点以上各土层按厚度加权的等效内摩擦角(°)。



图 4.7.5 理论直线滑动面 1-挡土构件; 2-锚杆; 3-理论直线滑动面

### 17.2.2 配筋简图输出钢构件的应力比

7.1.0版本,对于钢构件在【剖面结果】的配筋简图中改为以应力比的形式输出简图。

## 17.2.3 优化荷载剖面简图输出

7.0.0 版本,程序增加了剖面结果的输出,用户可以在荷载简图中查看荷载剖面简图。在绘制荷载剖面简图时,程序会将剖切位置进行分段,将每段起点和终点的荷载值连起来形成剖面图形。当荷载起始点、突变点或者拐点处于分段中间时,程序也是仅将起点和终点的荷载值连起来绘制图形, 无法细致地描述荷载的变化。7.1.0 版本针对这种情况做了优化,可以将分段中的荷载起始点、突变点或者拐点反应在剖面上,然后将这些点的荷载值和每段起点、终点的荷载值连起来,绘制出体现荷载变化的剖面简图,如下图所示:





# 第十八章 石化建筑物抗爆设计软件

### 18.1 前处理及计算

#### 18.1.1 配筋信息中默认的墙分布筋配筋率调整

根据《石油化工建筑物抗爆设计标准》第6.5.1条第2款规定:应采用双层双向配筋,且每层 每个方向的配筋率不应小于0.25%,最大配筋率不应大于1.5%。因此,7.1.0版本把【计算参数】的 【配筋信息】中默认的墙竖向分布筋配筋率(%)和墙最小水平分布筋配筋率(%)修改为0.5,方便用户 无需修改参数便可在进行上部结构计算时,采用符合规范要求的墙最小分布筋配筋率进行,如下图 所示:

YJKCAD-参数输入-材料信息	> 材料参数		×
输入关键字搜索 语空	→材料信息 > 材料参数		
性物 <b>首</b> 体信自	混凝土容重(kN/m3)	25 轻骨料混凝土容重(kW/m3)	18.5
和19之中信息 计算控制信息 ^{按制信息}	砌体容重(kN/m3)	22 轻骨料混凝土密度等级	1800
アロロークの目息の目的になっていた。	钢材容重(kN/m3)	78 索体容重(kN/m3)	76
高級分析 非线性屈曲分析		铝合金容重(kN/m3)	27
分析不解参数 风荷载信息	■11的信息 ※符約词55 ()	100	100
基本参数    指定风荷载			200
<b>地震信息</b> 一种電信員	墙竖向分布筋鹬筋率(%)	U.5 / / / / / / / / / / / / / / / / / / /	200
自定义影响系数曲线时城界式随机模拟法	<b>墙最小水平分布筋配筋率(%</b> )	0.5	
地震作用放大系数	结构底部需要单独指定墙竖	句分布筋配筋率的层号(如1,3—5)	
性能包络设计	结构底部需要单独指定的墙	竖向分布筋配筋率(%)	0.6
及计信息 活荷载信息			
构件设计信息			
边缘构件设计信息 钢构件设计信息			
包络设计			
材料参数			
地下室信息			
何 <b>執纽</b> 合 组合系数			
组合表 自定义工况组合			
	]		
导入    导出	恢复默认 高级选项		确定取消

注:

1、该参数填入的数值是墙竖向或者水平分布筋总的配筋率,根据规范双层双向配筋且每层每个 方向的配筋率不应小于 0.25%的要求,此处应至少填入 0.5%。

2、用 7.1.0 版本新建的模型此参数默认为 0.5,用 7.1.0 版本打开之前的旧模型,此参数仍然 为原模型设置的参数,需要用户手动修改。

## 18.1.2 设计结果中柱截面纵向钢筋的最小总配筋率调整

根据《石油化工建筑物抗爆设计标准》第6.5.3条第4款规定:柱截面纵向钢筋的最小总配筋 率不宜小于0.9%,最大总配筋率不应大于5%。在之前的版本中,设计结果中柱纵向钢筋的最小总配

筋率按照《混规》、《抗规》等规范中的相关条文执行,因此便会出现抗震等级较低的项目,柱截面 纵向钢筋的最小总配筋率低于 0.9%的情况。7.1.0 版本中对于柱截面纵向钢筋的最小总配筋率所执 行的规范增加了《石油化工建筑物抗爆设计标准》,将不会出现最小总配筋率低于 0.9%的情况,如下 图所示:



框架结构、抗震等级为2级-7.0.0版本



框架结构、抗震等级为2级-7.1.0版本

## 18.2 抗爆设计

### 18.2.1 读取的抗爆墙实配钢筋满足墙最小分布筋配筋率要求

模型	目荷载输入	前处理	1及计算	设计	结果	抗爆设计	弾	性时程分		楼板及	设备振动		具箱	基础设计	ナー 施工
	ß		<u>L</u>		₩ <b>.</b>	$\mathbf{i}$	ß	·····	Ē	1		1 A	₽		
配筋信息	验算结果	弹塑性 参数设置	实配钢 筋编辑	生成模 型数据	查看爆炸 动荷载	有限元 模型直看	计算 <b>一</b>	构件结 果简图	计算书 汇总	节点 时程	整体变 形云图	构件最 大内力	构件内 力滞回	切换至 EP模块	单自由度 动力法
单自由度	动力法设计						有限	元分析							工具箱

如上图所示,【抗爆设计】的【配筋信息】和【实配钢筋编辑】功能均可以读取施工图模块的实 配钢筋,之前的版本在读取抗爆墙的实配钢筋时,不会判断墙水平或竖向分布筋的最小配筋率是否 满足《石油化工建筑物抗爆设计标准》第6.5.1条第2款每层每个方向的配筋率不应小于0.25%的 要求,需要用户自己判断并且手动调整,而7.1.0版本在读取墙实配钢筋的时候则会判断是否满足 墙分布筋最小配筋率的要求。对于不满足墙分布筋最小配筋率要求的情况,程序则会自动根据墙厚 和墙分布筋最小配筋率反算一个满足规范要求的钢筋布置,用于抗爆设计验算。



抗爆墙墙厚 350mm-7.0.0 版本



#### 抗爆墙墙厚 350mm-7.1.0 版本

按照规范 6.5.1 条要求,350*1000*0.25%=875,墙分布筋最小应该满足 875mm²/m 的配筋面积。 如上图所示,对于 7.0.0 版本,水平分布筋的实配钢筋面积为 524mm²/m,竖向分布筋的实配钢筋面 积为 566mm²/m,不满足规范墙分布筋最小配筋率的要求,需要用户手动修改。而对于 7.1.0 版本, 水平和竖向分布筋的实配钢筋面积为 1026mm²/m,满足规范要求。

## 18.2.2 数值积分法调整两端铰接时 KLm 的计算

之前的版本采用数值积分法进行抗爆验算,两端铰接时 KLm 的计算是按照规范公式先分别求出 弹性状态和塑性状态的 KLm,然后取平均值用于弹塑性分析。7.1.0版本则是先分别求出 KL、Km 的弹 性和塑性数值的平均值,然后根据规范公式再求出 KLm,具体计算过程如下:

7.0.0版本:
KLm(弹性)=Km(弹性)/KL(弹性)
KLm(塑性)=Km(塑性)/KL(塑性)
KLm(弾塑性)=(KLm(弾性)+KLm(塑性))/2
7.1.0版本:
Km(弹塑性)=(Km(弹性)+Km(塑性))/2
KL(弹塑性)=(KL(弹性)+KL(塑性))/2
KLm(弹塑性)=Km(弹塑性)/KL(弹塑性)

# 第十九章 二维门刚设计软件

## 19.1 建模导入 CAD 图纸功能改进

程序判断第一次导入 CAD 时,自动将左下角点放置于原点,当模型图面上已经存在网格时,导入 CAD 时程序提示输入插入点。为了更准确计算风荷载。



## 19.2 平移节点支持尺寸按水平段输入程序自动算坡长

轴线	网格	构	件布置	荷朝	<b>沛置</b>	约束	反布置	其他劉	西	结构计	算	基础设	壯	钢结构	图 钢线	胸工具	箱						
F	$\cap$		Ħ	$\square$	•	/	$\checkmark$		/	ſ	ి			<b>1</b>	#	\$₿	#	##	<b>∏</b>	+‡+	$\bigcirc$		_
模型设置	们刚	桁架	框架	纵向榀	市点	直线	两点 直线	平行直线	辐射线	圆弧	折线	矩形	围	导入 DWG	轴线 单根命名	轴线 显隐	清理 网点	形成 网点	取消 交叉节点	/	-/-	°	ⅇ
	快	速建模							网格辅	兪入						Þ	网格编辑	F.			修改		

点击平移节点,选取模型中要拖拽的节点,鼠标右键,选择是否按照坡度拖拽,1为是,然后选 择拖拽方向的向量第一点和第二点,之后选择拖拽节点的基点,接着输入类型为沿坡度距离或者水 平距离,最后输入尺寸回车完成操作。

## 19.3 纵向榀参数化建模支持双片支撑形式

纵向榀柱间支撑的参数化建模支撑类型增加双片支撑,参数信息包括斜杆和连接斜杆的缀条信







### 19.4 针对竖向构件柱或支撑增加垂直于杆件方向的荷载

柱间荷载增加垂直于杆件方向的均布荷载类型布置,主要用于交互布置支撑或柱的垂直杆件荷载。

## 19.5 程序自动确定非标准体型的风荷载

针对门刚规范和荷载规范均没有给出对应结构类别的非标准体型,程序参考近似标准体型分别 按门刚规范和荷载规范自动生成风荷载,以便节省手工交互修改每段的体型系数的时间。



## 19.6 针对单层门刚柱底刚接时, 柱长系数自动按钢标计算

针对单层门刚柱柱长系数,门刚规范仅给出柱底铰接的计算公式,程序在计算参数页的钢结构 设计信息中有"柱长系数执行钢标计算",V7.1为了更自动,针对单层门刚柱柱底刚接的情况,自动 按照钢标线刚度比计算柱长系数。



## 19.7 门刚柱长系数判断摇摆柱和中间柱属性改进梁跨取值

V7.1版本当模型中存在抗风柱(承担风和竖向力)、摇摆柱、和框架中柱属性时。梁长取值到抗风柱或摇摆柱或框架中柱柱顶。

之前版本程序没有判断抗风柱(承担风和竖向力)、摇摆柱属性,梁长按门刚柱到中间框架柱顶 取值。

输线网络 构件布置 荷载布置 約束布置 其他政密 结构计算 1	机磷设计 网络构图 网络构工具箱 📼			
		1 1 1 4 4 =	💳 Î 🗔 🗙	
抗风柱 设置 制除 设置 删除 设置 删除 柱缘改 与下柱 变载面柱	梁 设置 影除 梁修改 变数面梁 变数面	支撑 支撑修改 设置 删除 设置 删除 计算长	夏 实际长度 钢构件 使用条件 删除加固	抬取布置 用钢量 用钢
机风柱 抗风柱 夹层柱 夹层柱 拖接柱 医腰柱 对齐 拟合	夹层梁 夹层梁	単位件 単位件 肉樹 肉樹	抗口(車)	TXT EXC
桂布置	梁布置	<b>撑布置 单拉杆 雨棚履性 计</b>	算长度 钢构件加固	其他
第一段梁 M6Z1	第二 <b>代</b> 架 前八世-1	β(X) Η−−↓	第二段 # 抗凡世~ (	
如国而小,百异和321性长系数,现住在开现	为 权不时没计算。 乙酮作用	7在以示效为应该二权朱月昇。		

## 19.8 勾选二阶效应时柱长系数自动执行门刚规范附录 A. 0.7

V7.1 版本当勾选考虑 P-Δ效应时,针对等截面单段柱和柱底铰接的单段变截面柱,程序自动判断并执行门刚规范附录 A.0.7-1 和 3 规定计算。



#### 19.9 活荷载质量改进

V7.1版本针对活荷载质量统计增加参数为活荷载或均布雪荷载选项。

选择活荷载即为普通活荷载,当建模中布置有相容活荷载时,活荷载质量优先取相容活荷载数

值;当普通活荷载作为一组互斥荷载时,此时建模中相容活荷载数值即为0,互斥活荷载1存在数

值,那么活荷载质量取互斥活荷载1工况数值。

选择均布雪荷载转为质量时,即为建模中的互斥活荷载2工况。



活荷载转为质量,即为普通活荷载,当建模中布置有相容活荷载时,活荷载质量优先取相容活 荷载数值;当普通活荷载作为一组互斥荷载时,此时建模中相容活荷载数值即为0,互斥活荷载1存 在数值,那么活荷载质量取互斥活荷载1工况数值。

均布雪荷载转为质量,当建模中布置有雪荷载,按程序默认生成的均布雪荷载为建模中的互斥 活荷载 2 工况取值。

## 19.10设计结果-荷载简图增加吊车荷载布置图

设计结果-荷载简图菜单,增加吊车荷载简图,用于显示吊车布置的定位尺寸、吊车跨度、起重 量、工作级别等。



## 19.11 增加防火验算整体计算书

设计结果增加-防火报告计算书,当模型中杆件布置防火温度且勾选计算防火验算时,设计结果 输出防火报告计算书内容包括计算依据、防火参数、防火应力、防火涂料面积以及技术要求等。

- 4	邮选网俗	1 艳	件布查	何	<b>我</b> 布古	- SI	R布吉	具他	炭()舌	- 雨处	埋 15	计结果	量	山反け	钢结构的	9 13	站构上	具稍	. U		
ß	$\widehat{[1]}$	Π			$\bigcirc$	11	F		¥	Ŀ		Ħ	\$		×	w	-	Ż	×	Q	w
参数 设置	构件 编号	荷載 简图	应力与 配筋	防火 结果	梁挠度	砼梁 裂缝	高厚比	计算 长度	内力 简图	支座 反力	内力包络	位移 简图	振型	图形拼接	计算书 Text	计算书 Word	防火 报告	超限 信息	计算长 度系数	构件 信息	构件 详细
设置	编号	荷载			设计	結果			标准	内力	设计内力	变刑	<b>※</b> 图	图形拼接			结	果文件			

防火报告								-	
🛂 🔁 😫									
<ul> <li>② 浏览全部</li> <li>③ 資1章 防火设计体强</li> <li>② 算2章 防火争救</li> <li>④ 第3章 防火争救</li> <li>④ 第4章 防火验算</li> <li>④ 41 梁防火应力比</li> <li>④ 41 梁防火应力比</li> <li>④ 42 枯外火应力比</li> <li>④ 5章 防火涂料技术要求</li> </ul>	1、《铜结构防火涂料》(GB 14907-2018) 2、《建筑铜结构防火技术规范》(GB 512 3、《增结构防火涂料应用技术规范》(GB 50016-20 4、《建筑设计防火规范)(GB 50016-20 5、《铜谷4口接流及量型状标准》(GB 50016-20	49-2017) CS 24:20 4) (2018 50205-2	19) 修订 1020)	£)	第1章	防火计	<b>设计依</b> 打	居	
					第2章	き 防り	大参数		
		构件	编号	耐火极 限(b)	表2- 最高耐火温 度(°)	-1 影胀型防 涂层厚度 (nn)	<b>火参数</b> 等效热阻 Ri(n2.C/W)	保护层类型	截面形 状系数
		梁	5	2.00	462.27	10.00	0.30	外边缘型	131.858
		梁	6	2.00	454.52	10.00	0.30	外边缘型	128.704
		梁	7	2.00	460.40	10.00	0.30	外边缘型	131.096
		梁	8	2.00	837.81	10.00	0.10	外边缘型	131.858
		梁	9	2.00	830.56	10.00	0.10	外边缘型	128.704
		梁	10	2.00	836.08	10.00	0.10	外边缘型	131.096
		梁	11	2.00	837.81	10.00	0.10	外边缘型	131.858
		梁	12	2.00	830.56	10.00	0.10	外边缘型	128.704
		梁	13	2.00	836.08	10.00	0.10	外边缘型	131.096
		梁	14	2.00	837.81	10.00	0.10	外边缘型	131.858
		梁	15	2.00	830.56	10.00	0.10	外边缘型	128.704
		梁	16	2.00	836.08	10.00	0.10	外边缘型	131.096
		柱	1	2.00	462.36	10.00	0.30	外边缘型	131.897
		柱	2	2.00	837.89	10.00	0.10	外边缘型	131.897
		柱	3	2.00	761.51	10.00	0.10	外边缘型	103.797
		柱	4	2.00	761.51	10.00	0.10	外边缘型	103.797

## 19.12 整体计算书输出增加构件设计结果汇总等

设计结果-计算书 Word 输出,增加风荷载、雪荷载信息内容,增加构件设计结果汇总表,增加 高厚比宽厚比简图等,使得计算书更完整。

轴线网格 构件布置 荷	载布置 约束布置	其他数据 前处	理 设	结果	翻设计	钢结构图	個结构工	具箱 🖸	)								
🖉 🗊 🛃 门 🚺		1 \$ L		$\exists \forall \leq$		x I	<ul> <li>w</li> </ul>	<b>Ý</b> X	1 🖒 🚽								
参数 构件 荷载 应力与 防火	梁挠度 砼梁 高厚比	计算内力支座	内力包络	位移 振型	图形拼接	计算书 计	算书 防火		、 构件 构	14							
设置编号 简图 配筋 结果	裂缝	长度 简图 反力		简图		Text V	/ord 报告	信息 度系統	敗 信息 详	细							
设置編号荷載	设计结果	标准内力	设计内力		图形拼接		#	课文件									
🔁 🔁 😫 👛																	
□ 2 浏览全部	河山 井口 川上																
→ ☑ 设计依据	采构件																
□ □ 结构设计总信息			应力比验算														
			构件号	上截面 强度	下截面 强度	上截面 稳定 (面外)	下截面 稳定 (面外)	上截面 稳定 (面内)	下截面 稳定 (面内)	抗剪强 度	限值	状态					
2 钢结构设计信息			14	0.08	0. 08	0.08	0.05	0.07	0.05	0.04	1.00	满足					
			15	0.00	0.00	0.00	0.00	0.00	0.07	0.04	1.00	340 m					
図风荷載信息			15	0.08	0.08	0.03	0.06	0.06	0.07	0.04	1.00	满正					
☑ 雪荷載信息			16	0.08	0.08	0.03	0.06	0.06	0.07	0.04	1.00	满足					
④ / 结构基本信息			17	0.08	0.08	0.08	0.05	0.07	0.05	0.04	1.00	满足					
● ● 荷载与双应组合			18	0.11	0.11	0.03	0.05	0.08	0.09	0.05	1 00	満足					
● ☑ 内力计算结果			10	0.11	0.11	0.00	0.00	0.00	0.00	0.00	1.00	(# D					
● 2 节点位移			19	0.11	0.11	0.02	0.06	0.07	0.09	0.05	1.00	满正					
◎ 図构件设计结果汇总			20	0.11	0.11	0.02	0.06	0.07	0.09	0.05	1.00	满足					
●			21	0.11	0.11	0.03	0.05	0.08	0.09	0.05	1.00	满足					
🖨 🗹 计算简图	长细比、宽厚比等的验算																
				高厚	夏比	宽师	厚比	正则化	长细比	变形后斜	¥梁坡度						
● 🧹 荷載简图			构件号	计算值	限值	计算值	限值	计算值	限值	计算值	限值	状态					
☑ 应力比简图 ☑ 单工况位移简图			14	64, 33	250.00	12.07	12 20		99999.	1/206	1/3	满足					
🕢 🗹 单工况内力简图			14	01.00	200.00	12. 01	10.00		00	17 200	1/5	THAT					
● 2 支座反力图			15	64.33	250.00	12.07	12.20		99999. 00	1/481	1/3	满足					
● ■ 単工況挠度简图 ● 计算长度系数简图			16	64.33	250.00	12.07	12.20		99999. 00	1/481	1/3	满足					
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			17	64.33	250.00	12.07	12.20		99999. 00	1/206	1/3	满足					

## 19.13 钢结构工具箱吊车梁

吊车梁计算工具箱增加高强钢 Q460/Q500/Q550/Q690 的钢材牌号。

吊车梁 制动插 净 集 中 道 句 野 平 約 新	痔度 (nm) 痔皮型 系数 軟的假定分布十 性拒IR (cn4) 系数按《建筑	6000 无制动梁 0.85 乐度1z计算公式 结构可靠性设	<ul> <li>吊车梁材料</li> <li>▲面板件宽厚</li> <li>(個标≫6.1.4- 2000     </li> <li>け统一标准》取值     </li> </ul>	Q345 Q235 Q356 Q356 Q350 Q420 Q420 Q420 Q420 Q420 Q420 Q420 Q42	✓ 新埠 ^{标准》身}	<mark>钢号</mark> _{纹说明6.1.4}
序号	吊车跨度 10500m	起重量 5.00t	工作级别 A1 ^{~~} A3轻级	吊钩类型 硬钩	单例轮 2	増加 删除 修改
L □将	吊车资料列表	中数据存入自行	定义吊车库		,	
选择吊车 吊车台 第一台	治教和序号 教 吊车序号	1 ~ 1 ~	注: 单跨吊车梁」 第一台及第二	- 最多计算两台吊车 - 台吊车仅可从列表	神选择	

# 第二十章 二维重钢厂房设计软件

## 20.1 整体计算书增加多项内容输出

整体计算书输出增加风荷载、雪荷载信息输出,钢构件设计结果汇总,吊车荷载简图,高厚比 宽厚比简图。



## 20.2 设计结果增加防火计算书

设计结果增加-防火报告计算书,当模型中杆件布置防火温度且勾选计算防火验算时,设计结果 输出防火报告计算书内容包括计算依据、防火参数、防火应力、防火涂料面积以及技术要求等。

1	ALEPIN I	明布西	荷克	CALL .	约束布置	H	NOT I	iQ111	14 Heta	H 1	网络构图	NEWTH	<b>X</b> (*							
			3		NB		報し	5		题	*	w	×	10	w					
	构件 荷数	应力与	防火	早祝度 日	全梁 南厚日	1 计算	内力 支援	E 内力包塔 6	286 振型 图	形拼腰	计算书 计算	訪火を	田 计算	长梅件	构件					
	编号荷载	BORG	REPT	Qitses	esta R	2018	标准内力	设计内力	支形图 图	彩耕康	Text wor	「日本	18 点余 文件	K IS	24-900					
s	防火服告															_				
	1 01 0	2																		
8	2 浏览全部					1 11/2		168.)												
	- · · · · · · · · · · · · · · · · · · ·	火设计依据 火参数			4.		加て生(1	的)												
	■ 第3章 読	火涂料面积	ą		4. 1	**. 1. 1 ** 表4-1-1 梁筋火应力比														
	● ■ 第4章 初	火聖昇  紙型(朝)											应力比				涂层最小	等效熱		
	⊕ 22 4.2 5 2 第5章 脱	目題教型(朝 火涂料技术	) (要求						141+=	上載	面 下截面 强度	上載面 稳定	下截面稳定	上載面 稳定	下載面 稳定	限值	计算值	限值		
									9	0.1	0.19	0.06	0,06	0.15	0.17	1.00	-	-		
									10	0.2	1 0.20	0.06	0.08	0.15	0.18	1.00	122			
									11	0.3	2 0.34	-	0.23	-	0.29	1.00				
					4.1	.2 4	ŧ					-								
				表4-1-2 柱防火应力比 会同题人名25 thun												1MB				
									构件	号		ß	动比			op	(m2.C/V)	76.91 <u>5</u>		
											强度	X向稳定	70	急定	限值	113	草值	限值		
									2		0.25	0.22	0.	30	1.00	-	-	-		
				4 1 3 終約非分時防火验算应力比																
					4. 1		1119 <b>1</b> E7J	10.01人强	H-PR. JILL				(C-54)				涂层最小等效			
						构件	编号	分肢	28 thr	vrinis	the v	1015977	(日)(市	(x2.C 计算值	/V) RB-1m					
									201		左肢(S2)	0, 20	0.5	6	0.20	1.00	0.00	0.00		
											右肢(S1)	0.19	0.3	6	0.20	1.00	0.00	0.00		
									柱	1	水平缀条	0.07	0.0	7	0.10	1.00	0.00	0.00		
											科缬条	0.11	0.1	2	0.16	1.00	0.00	0.00		
											右肢(S2)	0.23	0.2	7	0.24	1.00	0.00	0.00		
											左肢(S1)	0.21	0.2	5	0.22	1.00	0.00	0.00		

## 20.3 施工图-格构式柱脚节点增加新类型

V7.1 在格构式柱相关节点中扩展新节点类型。

型钢组合格构式柱(如[+H、2L+H、H+H 等组合)柱脚增加了三种分离式柱脚节点包括轻型、 中型和重型分离式柱脚。



四角钢组合格构式柱柱脚节点增加外露锚栓连接柱脚节点。



两圆管组合格构式柱脚节点增加外露式和托座式两种新节点。



四方管组合格构式柱脚节点新增加外露式锚栓连接节点。



四圆管组合格构式柱柱脚节点增加了外露式锚栓和托座柱脚节点。



20.4施工图-格构式柱肩梁节点增加新类型

V7.1 在格构式柱肩梁节点中新支持圆管组合格构式柱肩梁连接。



20.5 施工图-格构式柱牛腿节点增加新类型 V7.1 在格构式柱牛腿节点中新支持圆管组合格构式柱肩梁连接。





# 第二十一章 三维门刚设计软件

## 21.1 增加立面复制功能

三维门刚增加立面复制功能,点击"立面复制"按命令行提示选择源被复制的榀轴线,然后选择需要复制的榀轴线,弹出标准榀立面复制对话框可选择仅更新所选择的立面也可以更新所有同名称的榀立面。



## 21.2 增加偏心对齐功能



#### 偏心对齐

将不同构件之间进行边对齐布置,自动生成相关偏心数据,从而省去人工计算偏心数值的工作。 对齐的操作是先指定对齐的目标,再逐个指定需要和目标对齐的构件。如"梁与柱齐"操作时, 先选择柱,并指定柱的某一边,然后逐个选择和柱同一轴线的梁,被选择的梁自动按照和柱边对齐 的要求生成与轴线的偏心值。

上下对齐

用于对上下层之间的柱和墙体构件进行构件偏心对齐。

柱上下齐:上下两层柱尺寸不同时,可按上层柱对下层柱某一边对齐的要求自动算出上层柱的 偏心并按该偏心对柱的布置自动修正。

程序要求上下对齐的柱必须位于坐标相同的节点上。

## 21.3 建模模块吊车梁增加计算功能

三维门刚建模中增加吊车梁计算功能,当建模中布置吊车梁,点击"单梁查询"菜单点取单个 吊车梁,程序弹出吊车梁计算参数对话框,修改参数后点击计算弹出吊车梁计算书。

建模中并对布置吊车梁的构件自动默认为"吊车梁属性",用于钢结构施工图识别吊车梁相关节 点进行自动设计。



## 21.4 门刚风荷载增加调整系数交互修改

前处理及计算模块中自动生成门刚规范风荷载,增加调整系数的交互修改项,之前版本默认按 门刚规范第 4.2.1 条的系数 1.1 执行。V7.1 版本放开此系数的交互编辑。



# 第二十二章 光伏支架设计软件

## 22.1 模型荷载输入模块增加自定义荷载菜单

当模型中需要布置自定义荷载工况时,在"工况设置"中添加自定义工况,然后通过自定义荷载去布置。



## 22.2 刚性支架参数针对横向地坪坡度放大到 75 度

V7.1 针对横向地坪坡度由之前的限值 50 度放大到 75 度。

双桩双立柱	支架形式.		○ 微型桩基础		设置					
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	400*4	-		○ 混 <i>雜</i> 工块 ○ 夹具(不设置	基础)	设置				
光伏组件 		组件选择。	yjkCad			×				
组件排列:□ 檔	há	2114				<u>ت</u> .				
最低离地高度Hu(m	m):	15000		请输入一个0至7	5 之间的数字					
组件间隙(mm):		20								
距离斜梁顶高度(m	m):	120								
橫向悬挑长度₩1(m	m):	587			确定					
檀条连接点间距₩2	954									
纵向挑出主梁长度	666		☑ 柱底, 基础高度 構向地址协度()	夏随地坪坡度 ^ハ 、	波度变化 80					
☑ 纵向倾角同地抖	0		纵向地坪坡度(。	)	0					

## 22.3 针对任意布置的索杆件,增加光伏属性

V7.1针对非参数化布置的任意柔性支架的索杆件,可以设置索拉力和主被动索的定义。

模型荷载输入 (曲		1 仕怠	支架建模		資料	上部结构	计算	钢结	构图		相图形线	「「「「「」」						_				
		an 🍥	1	$\bigcirc$				Ð	Ð	0	A A		Ċ	0	↓[]		B	B		HILL	→	HARA
计算参数	別性 柔性 支架 支勢	生 屋顶 県 支架	自动导荷	显示 荷载	组件显示 开关	自定义 组件库	立柱	斜梁	標条	斜撑	拉索	微型桩	混凝土块	桩计算	柱底标 高修改	局部修改	拉索张 力修改	主被动 索修改	工况 设置	梁	节点	泽
	参数化建模		导荷	导荷 组件								模型修改							工况 恒载			
											何	<ul> <li>設立義</li> <li>组件</li> <li>雪 預米</li> <li>原米</li> <li>原北</li> <li>第23</li> </ul>	初应力 索 ○承重 型 力:(kiř) :(mm) 時天(の 等 13200. 等 13200.	rg 70 70 00 1311 00 1311 00 1311	× 其它索 <(mm) 85 85	)						

## 22.4 针对单桩双立柱增加桩顶布置横杆和斜杆

V7.1 针对单桩双立柱,可以设置桩顶布置横杆和斜杆,如下图所示。



## 22.5 双面光伏参数化布置

V7.1 双面光伏设置参数如下方图纸和按照图纸填写的参数信息及生成的模型如下。





# 第二十三章 变电构架设计软件

## 23.1 基础模块自动勾选读取 YJK-A 荷载组合

基础建模模块,选项中 V7.1 版本程序默认自动勾选读取 YJK-A 参数。

需要注意的是,读取 YJK-A 荷载组合后,设计师可根据要求检查荷载组合表读取的 YJK-A 组合 是否满足基础设计的要求,比如 YJK-A 在标准组合中没有地震组合系数,如需考虑需在表中增加地 震组合系数。准永久组合目前程序默认为 1.0 恒载+0.5 活载组合,如需增加更多的组合,(由于组合 表的准永久组合不支持增行)则可以将表导出到 excel 中编辑增加更多准永久组合行后再次导入程 序中使用。



# 第二十四章 部分包覆钢-混凝土组合框架结构设计软件

### 24.1 部分包覆钢-混凝土组合框架结构设计软件

盈建科部分包覆钢-混凝土组合框架结构设计软件,主要依据《部分包覆钢-混凝土组合结构技术规程》T/CECS719-2020,对部分包覆钢-混凝土组合柱、部分包覆钢-混凝土组合梁的参数化快速 三维建模、工程量统计、设置相关包覆钢特殊构件属性、进行有限元整体计算分析、并进行部分包 覆钢-混凝土组合柱、部分包覆钢-混凝土组合梁构件设计验算,同时生成构件连接节点、并绘制整 套施工图。

程序具体使用说明详见盈建科部分包覆钢-混凝土组合框架结构设计软件用户手册。

# 第二十五章 协同工具

## 25.1 自动判断梁尺寸标注规则

7.1.0版本之前,程序默认梁尺寸标注规则是 b×h,即宽度×高度。但是部分地区或者国家的图纸,梁尺寸标注规则为 h×b,即高度×宽度。



梁尺寸标注规则为 h×b 示例

为了适应这种情况,程序内部做了处理,程序会根据图面上的梁宽和梁标注,自动判断梁尺寸标注是宽度×高度,还是高度×宽度,进而根据判断出的规则,生成模型。



生成模型效果
## YJK7.1.0 版本升版说明

## 25.2 可将识别到的各类构件编号,作为属性传递给模型

部分英文图纸,每个构件都有自己的专属编号,各类属性均与该编号挂钩。程序生成模型时, 会将该编号以构件属性的形式记录到模型中,为之后通过构件编号给构件赋值做好数据准备。以柱 为例,将柱编号指定为柱名称,生成模型后,双击该柱,在自定义属性信息中就查看柱编号信息。



生成模型中柱属性中包含柱编号

## 25.3 增加对平面图上标高的自动识别

当楼层表没有包含全部楼层的底标高和层高时,程序会识别楼层平面中的楼层标高,并自动将 数值补充到楼层表中,得到完整的楼层组装信息。

FLOOR	FLOOR LEVEL (mPD)			
29/F	+120.50			
28/F	17.50			
27/F 仅至	间29层			
26/F	+111.50			
25/F	+108.50			
23/F	+105.50			
22/F	+102.50			
21/F	+99.50			

楼层表(仅到29层)

楼层表识别标记要素: ⊕+数字, 如下图:



屋岩	巨名	标高(M)	Ē	情柱	涩栀	~	
13	18/F	90.500	3.000	1 12	715 100	1	14.5
14	19/F	93.500	3.000				插八
15	20/F	96.500	3.000				
16	21/F	99.500	3.000				追加
17	22/F	102.500	3.000				
18	23/F	105.500	3.000				
19	25/F	108.500	3.000				删除
20	26/F	111.500	3.000				
21	27/F	114.500	3.000				
22	28/F	117.500	3.000				重新读表
23	29/F	120.500	3.300				
24	%%UROOF FRAMING PLAN	123.800	3.150				
25	%%ULIFT MACHINE ROOM FRAMING	126.950	3. 150				确定
26	%%UE&M PLANT ROOM FRAMING PLAN	130.100	3.150				
27	%%UF.S. TANK/PUMP ROOM FRAME	133.250	3.150				
28	%%UUPPER ROOF FRAMING PLAN	136.400	2.900				取消

自动补充完整的楼层表