梁柱节点核心区验算实例(一)

董礼

您是否曾因节点核心区截面不满足抗剪要求而苦恼?等式左边的 Vj 值是怎么算的?等 式右边的限值手工核算之后,与程序输出的数值相差甚远?

N-C=12 (I=7000073, J=6000073)(1)B*H(mm)=400*800 Ang=180.0 Cover= 20(nm) Cx=1.25 Cy=1.25 Lcx=3.60(m) Lcy=3.60(m) Nfc=2 Nfc_gz=2 Rcc=60.0 Fy=360 Fyv=360 裕柱 C60 矩形 Iive=c0.850 jzx=1.112, jzy=1.105 02vx=2.487, 02vy=3.229 Imat=1.200 Tvu=1.440 Tmd=1.200 Tvd=1.440 (74)M= -2774.3 Uc= 0.32 Rs= 2.21(%) Rsv= 0.69(%) Asc= 443 (53)N= -2331.2 Mx= 340.3 My= -702.8 Asxt= 1772 Asxt0= 1772 (53)N= -2331.2 Mx= 340.3 My= -702.8 Asxt= 2658 Asyt0= 2658 (53)N= -2331.2 Mx= -103.7 My= 682.3 Asxb= 1772 Asxt0= 1772 (53)N= -2331.2 Mx= -103.7 My= 682.3 Asxb= 1772 Asxb0= 1772 (53)N= -2331.2 Mx= -103.7 My= 682.3 Asyb= 2658 Asyt0= 2658 (53)N= -2331.2 Vx= 461.7 Vy= 147.8 Ts= -0.6 Asvy= 158 Asyx0= 100 (53)N= -2331.2 Vx= 461.7 Vy= 147.8 Ts= -0.6 Asvy= 158 Asyv0= 44 PickForz@tH:fata. (53) N= -2066.7 Vjx= 1538.7 Asvjx= 418 Asvjxca1= 418 (58) N= -2066.7 Vjx= 1538.7 Asvjx= 176 Asvjvca1= 0 **(2HcH=1:53) Tick&ZCUMEMTAWER Vjx=1538.751/7 Vre*0.30*1.00*Fc*fc*bj*hj=1087.3 《砼规范》11.6.3 抗型牽载力: CB XF= 521.95 CB YF= 866.74

今天我们就结合几个算例,来告诉大家梁柱节点核心区到底该如何验算。

在介绍算例之前,我们先回顾下规范是如何规定的:《混规》11.6.2、11.6.3 对于节点核 心区做了详细的规定,《抗规》附录 D 公式基本与《混规》一致。因此程序采用《混规》公 式进行验算。

11.6.2 一、二、三级抗震等级的框架梁柱节点核心区的剪力设计值 *V_j*,应按下列规定计算:

- 1 顶层中间节点和端节点
 - 一级抗震等级的框架结构和9度设防烈度的一级抗震 等级框架:

$$V_{j} = \frac{1.15\Sigma M_{\text{bua}}}{h_{\text{b0}} - a'_{\text{s}}}$$
(11.6.2-1)

2) 其他情况:

$$V_{j} = \frac{\eta_{jb} \Sigma M_{b}}{h_{b0} - a'_{s}}$$
(11. 6. 2-2)

- 2 其他层中间节点和端节点
 - 一级抗震等级的框架结构和9度设防烈度的一级抗震 等级框架:

$$V_{j} = \frac{1.15 \Sigma M_{\text{bua}}}{h_{\text{b0}} - a'_{\text{s}}} \left(1 - \frac{h_{\text{b0}} - a'_{\text{s}}}{H_{\text{c}} - h_{\text{b}}} \right)$$
(11. 6. 2-3)

2) 其他情况:

$$V_{j} = \frac{\eta_{jb} \sum M_{b}}{h_{b0} - a'_{s}} \left(1 - \frac{h_{b0} - a'_{s}}{H_{c} - h_{b}} \right)$$
(11. 6. 2-4)

11.6.3 框架梁柱节点核心区的受剪水平截面应符合下列条件:

$$V_{j} \leqslant \frac{1}{\gamma_{\text{RE}}} (0.3\eta_{j}\beta_{c}f_{c}b_{j}h_{j}) \qquad (11.6.3)$$

- 式中: h_j——框架节点核心区的截面高度,可取验算方向的柱截 面高度 h_c;
 - bj 框架节点核心区的截面有效验算宽度,当 bb 不小 于 bc/2 时,可取 bc;当 bb 小于 bc/2 时,可取 (bb+0.5hc)和 bc 中的较小值;当梁与柱的中线不 重合且偏心距 eo 不大于 bc/4 时,可取 (bb + 0.5hc)、(0.5bb+0.5bc+0.25hc-eo)和 bc 三者中 的最小值。此处, bb 为验算方向梁截面宽度, bc 为 该侧柱截面宽度;
 - η;——正交梁对节点的约束影响系数:当楼板为现浇、梁 柱中线重合、四侧各梁截面宽度不小于该侧柱截面

宽度 1/2,且正交方向梁高度不小于较高框架梁高度 的 3/4 时,可取 ŋ 为 1.50,但对 9 度设防烈度宜取 ŋ 为 1.25;当不满足上述条件时,应取 ŋ 为 1.00。

算例 1:《混规》11.6.2-4

疑问:

节点核心区控制工况为 30 工况, 二级抗震 (图 1), 反弯点距离为 2362mm+2383mm (图 2)。

根据《混规》11.6.2-4 公式:

$$V_{j} = \frac{\eta_{jb} \sum M_{b}}{h_{b0} - a'_{s}} \left(1 - \frac{h_{b0} - a'_{s}}{H_{c} - h_{b}} \right)$$

Vjy=1.35x(174.8+433.9)*1000/(460-40)*(1-(460-40)/(2362+2383-500))=1763kN 与程序输出的 1805.3 不符,请问是哪里算的不对吗?

N-C=7 (I=2	2000028, J=	1000022) (1) B*H	(mm) =600*6	00			
Cover= 20(r	nm) Cx=1.25	Cy=1.25 Lcx=5	.20(m) Lcy	=5.20(m)	Nfc=2 Nfc_gz=2	Rcc=35.0 Fy=360	Fyv=360
砼柱 C35 矩	巨形						
livec=1.000	0						
η mu=1. 500	η vu=1.95	0 η md=1.500	η vd=1.95	0			
X: λ c=4.66	64						
Y: λ c=4.66	64						
(27)Nu=	-1396.5 U	c= 0.23 Rs= 1	.76(%) Rs	v= 0.60(%) Asc= 254		
(34)N=	-952.7 Mx=	-577.4 My=	-307.3	Asxt=	1515 Asxt0=	1515	
(27)N= -	-1396.5 Mx=	-85.1 My=	-813.2	Asyt=	2157 Asyt0=	2157	
(34) N=	-952.7 Mx=	686.8 My=	132.0	Asxb=	1987 Asxb0=	1987	
(31)N= -	-1100.2 Mx=	78.2 My=	583.0	Asyb=	1395 Asyb0=	1395	
(27)N= -	-1396.5 Vx=	361.3 Vy=	-41.8	Ts=	-3.9 Asvx=	161 Asvx0=	46
(27)N= -	-1396.5 Vx=	361.3 Vy=	-41.8	Ts=	-3.9 Asvy=	161 Asvy0=	46
节点核心区	设计结果:						
(27) N=	-543.6 V	jx= 1121.8	Asvjx=	134	Asvjxcal=	0	
(<u>30)</u> N=	-478.7 V	jy= -1805.3	Asvjy=	540	Asvjycal=	540	

图 1

图 2

解答:

用户手算的过程基本正确,但 YJK 软件在验算节点核心区的时候会做如下处理:

1) Hc 的选取

《混规》规定 Hc 为反弯点距离,不过目前程序很难判断上一层的柱高以及反弯点的情况。因此 Hc 程序取的是本层的高度,即 Hc=5200mm。

2) as`的取值

由于节点核心区的验算在设计阶段完成,因此程序并不知道钢筋的实配值是多少,只能 按照纵筋直径为 25mm,箍筋直径为 10mm,本工程保护层厚度为 20mm

因此 as`=20+10+25/2=42.5mm(图 3)。

图 3

综上, Vjy=1.35x(174.8+433.9)*1000/(457.5-42.5)*(1-(457.5-42.5)/(5200-500)) =1805.3kN 与输出值一致。

总结:

1) Hc 的取值以及 as`的偏差,会导致用户在手核节点核心区的时候存在一定的误差。

2)通过算例 1,我们也不难看出,尽管 YJK 采用层高作为 Hc,在大多数情况下,其计算值与实际值相差不大。

3) 在 YJK7.0 版本中,我们在【高级选项】—【柱】中提供了【Hc 取上柱和下柱中点之间的距离】参数(图 3a),若不勾选,Hc 取层高;若勾选,则 Hc 取上柱和下柱中点之间的距离,以适应上下层层高不同的柱节点核心区计算。

通用 梁 柱 墙 整体指标 其他	计算相关 前处理 前处理(续) 施工图 鉴定加固
通用 梁 挂 墙 整体指标 其他 柱长小于该值不设计(m) 0.200 矩形截面柱角筋面积 设置 过柱配筋设计时考虑另端弯矩影响 过全截面面筋按边长分配 社双向地震调整不判断内力大小 受截面柱被打断时截面仍按主柱取 型钢砼柱 「工字形型钢砼柱翼缘方向配筋时考虑翼缘 型钢砼柱 四 四 四 四 0.200	 计算相关 前处理 前处理(续) 施工图 鉴定加固 剪跨比 柱路小剪跨比,小于该数值则 0.100 技简化方法算 柱剪跨比采用通用算法时的最小 0.040 剪力过滤系数 节点核心区 砼标号= 1.000 柱 0.000 梁 判断是否四边有梁 型判断梁宽是否小于柱宽一半 判断梁高是否小于正交方向梁高75% Ⅰho取上柱和下柱中点之间的距离
● 空的硅柱正截面的软硅柱设计 叠合柱 □ 叠合柱按型钢规程设计 矩形钢管砼柱 □ 按CECS159-2004第6.3.3条验算强柱弱梁 □ 按CECS159-2004设计时,考虑强柱弱梁、强 剪弱弯等调整系数	型钢混凝土柱: 砼梁和钢梁: ● 砼梁 ○ 钢梁 砼梁和型钢砼梁: ● 砼梁 ○ 型钢砼梁 钢梁和型钢砼梁: ● 钢梁 ○ 型钢砼梁 ☑ 判断为斜柱的支撑考虑节点核心区设计 □ 混凝土梁柱连接判断时过滤挑梁 双偏压新算法 ☑ 非507社采田20億匹新算法
 柱冲切不配箍筋临界系数 1.000 柱冲切考虑斜板 ✓柱连接实深时验算冲切 ✓ 空实深高度与板厚不同时,不验算冲切 柱剪力系数 ✓ 轴力 ✓ 剪力 ✓ 弯矩 	 □ 非起的技术用次補助利益 柱内纵向钢筋间距 150 mm 说明:该新算法仅应用于梯形及405自定义截面 □ 钢柱按受弯构件验算受剪

图 3a

算例 2:《混规》11.6.2-3

疑问:

《混规》11.6.2-3 中, Mbua 为根据实配钢筋面积反算求得, 程序是如何处理实配钢筋 反代的, 我想要手算如何核算呢?

$$V_{j} = \frac{1.15 \Sigma M_{\text{bua}}}{h_{\text{bo}} - a'_{\text{s}}} \left(1 - \frac{h_{\text{bo}} - a'_{\text{s}}}{H_{\text{c}} - h_{\text{b}}} \right)$$
(11.6.2-3)

∑M_{bus} 一节点左、右两侧的梁端反时针或顺时针方向实 配的正截面抗震受弯承载力所对应的弯矩值之 和,可根据实配钢筋面积(计人纵向受压钢 筋)和材料强度标准值确定;

解答:

施工图实配钢筋是需要根据配筋简图进行配置。而在配筋简图这一步,程序并不知道施 工图配筋是多少,因此这样就会产生一个悖论。为了解决这个问题,程序引入了超配系数这 个概念。程序采用计算弯矩值乘以超配系数,来模拟实配钢筋面积反算的弯矩。

超配系数可以在总参数进行指定,也可以在特殊构件定义中进行定义,默认值为 1.15 (图 4)。

值得注意的是,规范规定这个 Mbua 需要采用材料的标准值来确定。因此尚需将材料的设计值换算为标准值。本例为三级钢,设计值为 360,标准值为 400。换算系数=400/360=1.111

综上 Mbua=1.15xMbx1.111

通过图 5 我们可知,控制 Vjy 的工况为 30 工况。我们在梁弯矩图中(图 6)找到 y 方向的弯矩 Mb=697.1。(因为混规规定框架节点左右弯矩均为负弯矩时,绝对值较小的弯矩取 0)

N-C=5 (I=5000005, J=4000005) (1) B*H (mm)=900*1100		
Cover= 20 (mm) Cx=1.25 Cy=1.25 Lcx=1.80 (m) Lcy=1.80 (m) Nfc=1 Nfc_gz=1 R	cc=40.0 Fy=360	Fyv=360
忙住 C40 起形 超柱		
livec=1.000		
η mu=1.700 η vu=2.581 η md=1.700 η vd=2.581		
X: λ c=1.050		
Y: λ c=0.851		
(30) Nu= -2199.6 Uc= 0.12 Rs= 1.05(%) Rsv= 1.20(%) Asc= 490		
(33) N= -1523.2 Mx= 731.7 My= -5.8 Asxt= 2829 Asxt0=	30	
(1) N= -3822.7 Mx= -39.4 My= -22.5 Asyt= 3349 Asyt0=	0	
(1) N= -3822.7 Mx= -13.4 My= -14.2 Asxb= 2829 Asxb0=	0	
(1) N= -3822.7 Mx= -13.4 My= -14.2 Asyb= 3349 Asyb0=	0	
(27) N= -2100.8 Vx= 476.6 Vy= -8.4 Ts= -4.5 Asvx=	555 Asvx0=	0
(30) N= -2199.6 Vx= 9.1 Vy= -686.7 Ts= -234.0 Asvy=	555 Asvy0=	0
节点核心区设计结果:		
(27) N= -1063.2 <u>Vix= 1031.3</u> Asvjx= 294 Asvjxcal=	0	
(30) N= -1101.4 Vjy= -734.4 Asvjy= 294 Asvjycal=	0	

图 5

Mbua=1.15x697.1x1.111=890.7 框架两侧梁高不同,程序采用平均梁高作为 hb(图 7).hb=700

$$V_{j} = \frac{1.15 \sum M_{\text{bus}}}{h_{\text{b0}} - a'_{\text{s}}} \left(1 - \frac{h_{\text{b0}} - a'_{\text{s}}}{H_{\text{c}} - h_{\text{b}}} \right)$$

Vjy=1.15x890.7*1000/(657.5-42.5)*(1-(657.5-42.5)/(1800-700))=734.4kN 与构件信息结果吻合

总结:

1) 计算 Mbua 的时候,程序不仅考虑了超配系数,还考虑了设计值与标准值的换算系数;

2) 计算 Mb 时,框架节点左右弯矩均为负弯矩时,绝对值较小的弯矩取 0;

3)当框架左右两侧梁高不相等的时候,程序采用平均梁高作为 hb。

需要注意的是,很多用户手工核算时会因为错误的 Mb 取值,导致节点核心区手工核 算不准确。这里教大家一个读取梁弯矩 Mb 的方法:

勾选【高级选项】——【其他】——【输出各组合设计内力】(图 8)。如果模型较大, 勾选该参数会增加计算时间,请慎重选择。

	文本輸出选项	約 值籍度			
入关键字搜索	□ 輸出单振型构件内力	柱轴力数值 甘席 0.110			
	输出规定水平力下构件内力	· · · · · · · · · · · · · · · · · · ·	=		
1210年1月月 1211日日 1211日日	☑ 輸出各组合设计内力		_		
控制信息	御山祖合祠信忌	包络设计时节点坐称判断精度 100.000	·		
刚度系数		预应力			
	□ 輸出柱、情報節用煎磨比	□ 墙砼拉应力验算时忽略Mx			
非线性屈曲分析		□ 墙砼拉应力验算时忽略#y			
荷载信息	□ 杨岱结构分塔设计时输出对应塔是	110101			
基本参数		辺線相中			
電信息		□ 按轮廓配筋时重新整理配筋数据文件			
地震信息	叠体指标输出选项	□ 回步给办题署由寻下;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			
目定义影响系数曲	輸出空间层指标统计结果				
地震作用放大系数	□ 輸出相邻层质心偏心率	取沙线程数			
性能设计	□輸出地震作用SESS组合结果	☑优化设计速度			
性能包络设计	✓輸出风荷载下的位移比	构件信息文本显示			
· 開展機能 「「「」」 「「」」 「」」 「」」 「」」 「」」 「」」	风振舒适度	○跟随系统			
计信息	✓ 輸出顺风向顶点最大加速度	 随主页面比例显示 0.5 (0-1) 			
荷载信息	✓ 輸出構成向価占最大加速度				
外午夜计信息 构性设计信息	E wat we we want to the second second				
边缘构件设计信息					
钢构件设计信息					
】络戊计 北科信白					
材料参数					
钢筋强度					
引入室信息 5年90公					
组合系数					
组合表					
自定义工况组合	Ant. 44, 114 DB				
に長望をうか。 抗震楽完与加固	診費明明				
抗震鉴定(构件验:					
钢结构加固					
Z 至 登 金 定 可 集 性 鉴 完 伝 准					
危险房屋鉴定标准	输入关键字搜索 清空	恢复默认 确定	取消		
清武		Presented to the Present	-10/17		

勾选该参数之后,程序会在"设计结果"文件夹下,输出 dsnnl*.out 文件,本工程选取 第五层即 dsnnl5.out(图 9)

新建文件夹 (14) > 设计结果								
名称 へ	修改日期	类型	大小					
📧 check.out	2024/6/24 20:21	out文件	1 KB					
📧 dsnnl1.out	2024/6/24 20:22	out文件	811 KB					
📧 dsnnl2.out	2024/6/24 20:22	out文件	811 KB					
📧 dsnnl3.out	2024/6/24 20:22	out文件	811 KB					
📧 dsnnl4.out	2024/6/24 20:22	out文件	811 KB					
📧 dsnnl5.out	2024/6/24 20:22	out文件	811 KB					
∎≣ dsnnl6.out	2024/6/24 20 <mark>:</mark> 22	out文件	811 KB					

图 9

根据构件信息(图 10)我们可知柱子编号为 N-C=5

N-C=5 (I=5000005, J=4000005)(1)B*H(mm)=900*1100 Cover= 20(mm) Cx=1.25 Cy=1.25 Lcx=1.80(m) Lcy=1. 砼柱 C40 矩形 短柱

图 10

我们在 dsnnl5.out 中(图 11) 可以看到 Vy=734.4 为构件信息中的 Vjy;

BeamX 和 BeamY,分别为 x 方向和 y 方向的 Mb;

YBeamB 为梁宽、YBeamB 为梁高,通过 YBeamB=700 我们也可看到程序采用的是平均梁高,YBeamEcc 为偏心距 e0;

BeamXL、BeamXR、BeamYL、BeamYR 也分别与弯矩图中框架节点周围梁弯矩吻合(图 12)。

XBeam 柱局部坐板	B=300, XBeam 示系内力设计	山=500, XE	BeamEcc=0,	YBeamB=400,	YBeamH=700	,YBeamEcc=0						
组合号	Mx	Mv	Vx	Vv	Ν	Т	BeamX	BeamY	BeamXL	BeamXR	BeamYL	BeamYR
1	0.0	0. Ŏ	792.9	-393. 9	-1936.0	0.0	483.4	-549.4	483.4	-470.9	523.8	-549.4
2	0.0	0.0	763.1	-376.9	-1843.8	0.0	465.2	-525.7	465.2	-453.0	502.6	-525.7
3	0.0	0.0	133.0	-73.8	-399.6	0.0	81.1	-103.0	81.1	-75.1	92.0	-103.0
4	0.0	0.0	-131.1	-73.8	-399.7	0.0	-79.9	-102.9	76.4	-79.9	92.0	-102.9
5	0.0	0.0	129.3	-69.9	-399.2	0.0	78.8	-97.5	78.8	-77.5	94.7	-97.5
6	0.0	0.0	129.2	-77.7	-400.1	0.0	78.8	-108.4	78.8	-77.5	89.2	-108.4
7	0.0	0.0	795.2	-393. 9	-1936. 0	0.0	484.8	-549.4	484.8	-469.5	523.8	-549.4
8	0.0	0.0	790.6	-393. 9	-1936. 0	0.0	482.0	-549.4	482.0	-472.3	523.8	-549.4
9	0.0	0.0	792.9	-391.6	-1935.7	0.0	483.4	-546.2	483.4	-470.9	525.4	-546.2
10	0.0	0.0	792.9	-396.3	-1936. 3	0.0	483.4	-552.7	483.4	-470.9	522.1	-552.7
11	0.0	0.0	597.6	-297.9	-1475.1	0.0	364.3	-415.5	364.3	-350.5	394.3	-415.5
12	0.0	0.0	590.0	-297.9	-1475.1	0.0	359.7	-415.5	359.7	-355.3	394.2	-415.5
13	0.0	0.0	593.8	-293. 9	-1474.6	0.0	362.0	-410. 0	362.0	-352.9	397.0	-410.0
14	0.0	0.0	593.8	-301.8	-1475.6	0.0	362.0	-421.0	362.0	-352.9	391.5	-421.0
15	0.0	0.0	103.2	-56.8	-307.4	0.0	62.9	-79.2	62.9	-57.2	70.8	-79.2
16	0.0	0.0	-101.7	-56.8	-307.5	0.0	-62.0	-79.2	58.3	-62.0	70.8	-79.2
17	0.0	0.0	99.4	-52.8	-307.0	0.0	60.6	-73.7	60.6	-59.6	73.5	-73.7
18	0.0	0.0	99.4	-60.7	-307.9	0.0	60.6	-84.7	60.6	-59.6	68.0	-84.7
19	0.0	0.0	765.4	-376.9	-1843.7	0.0	466.6	-525.7	466.6	-451.6	502.6	-525.7
20	0.0	0.0	760.8	-376.9	-1843.8	0.0	463.8	-525.7	463.8	-454.4	502.6	-525.7
21	0.0	0.0	763.1	-374.5	-1843.5	0.0	465.2	-522.4	465.2	-453.0	504.2	-522.4
22	0.0	0.0	763.1	-379.2	-1844.0	0.0	465.2	-529.0	465.2	-453.0	500.9	-529.0
23	0.0	0.0	567.8	-280.9	-1382.8	0.0	346.1	-391.7	346.1	-332.6	373.0	-391.7
24	0.0	0.0	560.2	-280.8	-1382.9	0.0	341.5	-391.7	341.5	-337.4	373.0	-391.7
20	0.0	0.0	564.0	-276.9	-1382.4	0.0	343.8	-380.3	343.8	-335.0	375.8	-380.3
20	0.0	0.0	1021 2	-204.0	-1303.3	0.0	343.0	-397.2	343.0	-330.0	370.3	-391.2
21	0.0	0.0	-1026.2	-220 9	-1063.2	0.0	419.1	-294.0	419.1	-417.0	260.3	-294.0
20	0.0	0.0	629 1	-320.8	-1020 4	0.0	255 2	-290.3	09.1	-946 2	479-2	-290.3
30	0.0	0.0	622.3	-734.4	-11029.4	0.0	252.9	-697.1	252.9	-246.6	80.0	-697.1

图 11

图 12

限于篇幅的关系,今天的内容就到此为止了,关于《混规》11.6.3 条规范限值如何计算、 组合结构节点核心区的算例,后续会陆续更新,敬请关注。