盈建科 BIM 施工安全计算软件 YJK-AQJS 用户指引手册

北京盈建科软件股份有限公司

2025.02

	目录	
第一章	概述	1
第二章	产品安装及授权	2
—	产品安装	2
<u> </u>	产品授权	2
第三章	施工安全计算工具箱功能简介	4
—	脚手架工程类	4
<u> </u>	模板工程类	
三、	施工平台类	27
四、	起重运输机械类	
五、	施工临时设施类	
六、	混凝土工程类	
第四章	施工临时结构计算软件功能简介	40
—、	建模功能	40
二、	施工结构计算	45
第五章	结构工具箱软件功能介绍	53
—、	普通混凝土构件	53
<u> </u>	型钢混凝土构件	59
三、	人防构件	60
四、	鉴定加固	61
五、	钢结构工具箱	
六、	其他设计工具	75
附录 🗄	支持及参考规范	77

第一章 概述

盈建科 BIM 施工安全计算软件,面向施工单位技术人员的安全计算及深化设计应用场景提供的解决方案,基于盈建科自主知识产权的 BIM 平台及参数化建模技术,为工程项目提供全流程施工安全验算支持,助力施工单位实现现场安全施工及设计施工一体化管控。软件主要功能模块包括:

1、施工安全计算工具箱

面向施工单位研发的一款专业计算工具,为工程技术人员施工现场安全计算和施工 方案编制提供专业、精确、可靠的解决方案。

2、结构工具箱软件

针对结构构件进行安全计算,支持普通混凝土构件、型钢混凝土构件、人防构件、 钢结构构件安全计算,并支持安全加固鉴定、地震、连续梁等计算。

3、结构设计软件

软件内置目前盈建科结构设计软件 V7.0.0(官网最新版程序),包含结构建模、DWG 转换、上部结构计算、基础结构设计、砌体结构设计、施工图设计等。

4、施工临时结构计算软件

专门针对建筑施工过程中复杂临时结构工况的安全验算而开发的整体有限元计算 分析软件,支持复杂结构的模型导入、手动建模、荷载自定义及有限元计算分析成果输 出。

5、基坑支护设计软件

一款专门针对各类基坑设计而开发的有限元计算分析软件,集成了施工工况模拟、 支护及荷载输入、土层信息输入、整体计算、基坑构件施工图、二维工具箱等多个功能。

6、施工二维结构设计软件

软件主要完成门式刚架、桁架、框架的二维设计,包括结构二维模型的快速输入、 荷载自动导荷、截面优化、结构计算、节点设计和施工图绘制。

7、协同工具软件

施工结构 BIM 模型建模工具,可实现图纸一键智能翻模,且具有手动建模、模型调 改等功能。

1

第二章 产品安装及授权

官网下载链接 https://www.yjk.cn/article/2453/ 技术专线: 010-86489797 깺 盈建科服务与支持 专业 务实 高效 VIP 专线: 400-021-0116 首页 服务指南 知识库 产品下载 教学视频 微课堂 资料下载 二次开发 全部 🎽 输入关键词 当前位置: 首页 > 下载专区 > 产品下载 > 施丁软件 > 施丁安全计算软件 > 盈建科BIM施丁安全计算软件2025V1.0 (2025-02-14) 盈建科BIM施工安全计算软件2025V1.0 (2025-02-14) 产品下载分类 发布时间: 2025-02-14 结构专区 弹塑件Y-PACO 此程序为盈建科BIM施工安全计算软件2025版V1.0安装程序,适用于该软件64位版授权用户的下载、安装和使用。第一次下载并安装程序的用户,需要填 数字化智能设计软件 写产品序列号 (盈津科为用户提供的16位SN播权码) 进行激活,激活成功后方能正常使用,已激活程序,且接权码仍在有效期内的用户,在软件升级或下载 节点有限元分析软件 新版后, 古接使用即可, 如需试用,可加入盈建科BIM施工深化设计软件交流群进行申请,QQ群号:758205289;或致电盈建科公司:010-86489797,我公司会安排相关技术人 市政环保工业类 员为您提供上门激活服务。 电力行业 产品简介: 盈津科BIM施丁安全计算软件, 面向施丁单位技术人员的安全计算及深化设计应用场景提供的解决方案,基于盈津科自主知识产权的BIM平台及参数化津楼技 海外版 术,为工程项目提供全流程施工安全验算支持,助力施工单位实现现场安全施工及设计施工一体化管控。软件主要功能模块包括: 钢结构深化设计软件 一. 施丁安全计算丁具箱 面向施工单位研发的一款专业计算工具,为工程技术人员施工现场安全计算和施工方案编制提供专业、精确、可靠的解决方案。 装配式工业化软件 二、结构工具箱软件 BIM系列软件 针对结构构件进行安全计算,支持普通混凝土构件、型钢混凝土构件、人防构件、钢结构构件安全计算,并支持安全加固鉴定、地震、连续梁等计算。 YJKBIM设计软件 三、结构设计软件 软件内置目前盈建斜结构设计软件V7.0.0 (官网最新版程序) , 包含结构建模、DWG转换、上部结构计算、基础结构设计、砌体结构设计、施工图设计等。 BIM协同软件 四、施丁临时结构计算软件 专门针对建筑施工过程中复杂临时结构工况的安全验算而开发的整体有限元计算分析软件,支持复杂结构的模型导入、手动建模、荷载自定义及有限元计算分 绿建软件 析成果输出。 AC建筑软件 五、基坑支护设计软件 Rebro机电软件 一款专门针对各类基坑设计而开发的有限元计算分析软件,集成了施工工况携划、支护及荷载输入、土层信息输入、整体计算、基坑构件施工图、二维工具箱 等多个功能。 施工软件 六、施工二维结构设计软件 桥梁软件 软件主要完成门式刚架、桁架、框架的二维设计,包括结构二维模型的快速输入、荷载自动导荷、截面优化、结构计算、节点设计和施工图绘制。 七、协同工具软件 通用CAD软件 施工结构BIM模型建模工具,可实现图纸一键智能翻模,且具有手动建模、模型调改等功能。 高校专版 程序下载: 系统工具 盈建科BIM施工安全计算软件2025版V1.0.zip 成图大赛专版 元图CAD专区

图 2.1-1 官网下载页面

二、产品授权

一、产品安装

产品安装完成后,用户可在启动界面打开左下角【授权信息】,选择单机版授权并输入16位 SN 授权码,点击应用即可授权成功,如下图。激活成功后便可正式进入软件功能应用。

2017 盈建科软件	我的YJK 文档中心 新闻资讯 在线更新	- 🗆 ×
 ◇ 我的产品(7) ◆ <l< th=""><th> ● 提取 ● 建取及增加增加 ● 维取及增加增加 ● 维取及增加增加 ● 维取及增加 ● 法服收盈程 ● 法服收盈程 ● 建取金增 ● 建取合用 ● 建築 ● 建築</th></l<><th></th>	 ● 提取 ● 建取及增加增加 ● 维取及增加增加 ● 维取及增加增加 ● 维取及增加 ● 法服收盈程 ● 法服收盈程 ● 建取金增 ● 建取合用 ● 建築 ● 建築	
YJKBIM V1.0.0 授权信息	Q 博達直询工具 D 素线激活半台 ・ 盈達科粉制循環地是基础设计软件V7.0新爆功能 ・ 盈達科BIM施工安全计每软件2025V1.0 (2025-0) ・ 裂速科能例太验冒商明教程 ・ 盈建科建筑全专业BIM设计系列软件V2025 (2025)	

图 2.2-1 产品授权界面

如用户所使用的 SN 授权码是"试用码",则不能实现周转功能,在固定的设备激活 后无法退出转至其他设备进行激活使用。

如用户所使用的 SN 授权码是购买所得"正式码",则可对 SN 授权码进行周转使用。 用户可点击启动界面右侧【关于软件】打开【产品授权信息】,使用迁出功能即可将 SN 授权码当前绑定设备进行解绑,解绑完成后便可转至其他设备进行登录使用。

如用户在软件安装、授权或者使用方面的问题,也可使用手机 QQ 扫描下方二维码 或点击链接下方链接进入盈建科施工深化设计软件交流群,由专业技术人员处理。

附:

1-QQ 群链接: <u>https://qm.qq.com/q/OLTpOPsbaq</u>

2-QQ 群号: 758205289

3-产品试用码申请链接: https://www.wjx.cn/vm/eKc7Pnq.aspx#

4-交流群二维码

第三章 施工安全计算工具箱功能简介

目前施工安全计算工具箱 1.0 包含了脚手架工程、模板工程、施工平台、起重运输 机械、施工临时设施以及混凝土工程六大计算类别,而其中脚手架工程包含了 8 个计算 模块,模板工程包含了 20 个计算模块,施工平台包含了 2 个计算模块,起重运输机械 包含了 5 个计算模块,施工临时设施包含了 2 个计算模块,混凝土工程包含了 2 个计算 模块,共计 39 个计算模块。

一、脚手架工程类

1、落地式脚手架(扣件式)

适用于**架体类型为钢管扣件式的落地外架安全计算**,目前**支持单至多排外架计算**, 用户可设定架体参数、连墙件参数以及荷载参数,实现快速验算外架安全性并生成安全 计算书。右侧图示三维模型会根据用户设定的搭设参数,实现模型刷新,模拟搭设,同 时还可实现架体平面图、剖面图以及立面图的快速生成。

图 3.1.1-1 落地式脚手架计算界面

图 3.1.1-2 落地式脚手架立面图

2、落地式脚手架(盘扣式)

适用于架体类型为盘扣式的双排落地外架安全计算,用户可设定架体参数、连墙件 参数以及荷载参数,实现快速验算外架安全性并生成安全计算书。右侧图示三维模型会 根据用户设定的搭设参数,实现模型刷新,模拟搭设,同时还可实现架体平面图、剖面 图以及立面图的快速生成。

图 3.1.2-1 落地式脚手架计算界面

图 3.1.2-2 落地式脚手架剖面图

3、型钢悬挑架(扣件式)

适用于架体类型为钢管扣件式的**单、双排型钢悬挑外架**安全计算,用户可设定架体参数、连墙件参数、荷载参数以及悬挑钢梁参数,实现快速验算外架安全性并生成安全 计算书。除架体参数可自定义外,型钢的界面信息、锚固位置以及支点参数均可参数指 定修改。右侧图示三维模型会根据用户设定的搭设参数,实现模型刷新,模拟搭设,同 时还可实现架体平面图、剖面图以及立面图的快速生成。

图 3.1.3-1 型钢悬挑架计算界面

图 3.1.3-2 型钢悬挑架剖面图

4、型钢悬挑架(盘扣式)

适用于**架体类型为盘扣式的双排型钢悬挑外架**安全计算,用户可设定架体参数、连 墙件参数、荷载参数以及悬挑钢梁参数,实现快速验算外架安全性并生成安全计算书。 除架体参数可自定义外,型钢的界面信息、锚固位置以及支点参数均可参数指定修改。 右侧图示三维模型会根据用户设定的搭设参数,实现模型刷新,模拟搭设,同时还可实 现架体平面图、剖面图以及立面图的快速生成。

图 3.1.4-2 型钢悬挑架立面图

5、拉杆式(花篮式)悬挑架(扣件式)

该模块适用于架体类型为**扣件钢管的拉杆式悬挑脚手架**安全计算,即**花篮式脚手架**, 目前可支持单排、双排形式的选择,软件可对钢管、悬挑梁、吊耳板以及拉杆等一系列 搭设材料进行强度验算,共计 22 项验算内容。同时,用户修改材料参数以及搭设参数 时,右侧图示三维模型会同步刷新,保持与参数一致,便于查看。除方案编制所需要的 安全计算书外,还可以导出设计参数表、验算表、施工平面图、剖面图以及立面图等成 果。

图 3.1.5-1 拉杆式悬挑架计算界面

验算项目	验算内容	计算过程	结论
横向水平	抗弯	$\begin{split} \sigma &= \gamma_0 \times M_{\max}/W = 1.00 \times 0.498 \times 10^6/5 \\ &= 98.05 N/mm^2 \leq [f_a] \\ &= 1.00 \times 205 = 205 N/mm^2 \end{split}$	満足要求!
fTa⊵ ,P	挠度	$v_{max} = 1.28mm \le v_{lim} = min[l_b/150,10]$ = 6.00mm	満足要求!
纵向水平	抗弯	$\begin{split} \sigma &= \gamma_0 \times M_{\rm max}/W = 1.00 \times 0.223 \times 10^6/5 \\ &= 43.942 N/mm^2 \leq [f_a] \\ &= 1.00 \times 205 = 205 N/mm^2 \end{split}$	満足要求!
114294	挠度	$v_{max} = 1.03mm \le v_{lim} = min[l_b/150,10]$ = 10.00mm	満足萎求!
扣件抗滑 移	扣件抗滑 移	$R_{\max} = \gamma_0 \times R = 1.0 \times 2.49 = 2.49 kN \le R_C$ = 1.00 × 8 = 8.00 kN	満足萎求!
	长细比验 算	$\lambda = l_0/i = 2610/15.8 = 165.31 \le [\lambda] = 210$	満足要求!
立杆	稳定性验 算	外立杆截面应力 $\sigma = \gamma_0 \times N/\varphi A + \gamma_0 \times M_w/W$ = 73.50N/mm ² $\leq [f]$ = 205N/mm ²	满足要求!
	强度验算	$N_{\rm l}/A_c = 5.79/430.10 = 13.46 \text{N}/mm^2 \le 0.85 f$ = 174.25 N/mm ²	满足要求!
连墙件	稳定性验 算	$N_{\rm I}/\varphi A = 5.79/(0.949 \times 506.00) = 12.06 \text{N}/mm^2$ $\leq 0.85 f = 174.25 \text{N}/mm^2$	満足萎求!
	扣件抗滑 移	$N_{\rm l} = 5.79 \le R_{\rm c} = 1.00 \times 8.00 = 8.00 kN$	満足萎求!
悬挑主梁	抗弯	$\sigma = 12.12 \text{N}/mm^2 \ [f] = 235 \text{N}/mm^2$	満足要求!
验算	稳定性	$\sigma = 13.05 \text{N}/mm^2 \ [f] = 235 \text{N}/mm^2$	満足要求!
	拉杆强度	$\sigma = 37.23 \text{N}/mm^2 [f] = 205 \text{N}/mm^2$	満足要求!
	螵栓强度	$\sigma = 80.09 \text{N}/mm^2 \ [f] = 170 \text{N}/mm^2$	満足要求!
上拉杆件	吊耳板强 度1	$\sigma_1 = 14.74 {\rm N}/mm^2 ~[f] = 205 {\rm N}/mm^2$	满足要求!
验算	吊耳板强 度 2	$\sigma_2 = 12.20 \text{N}/mm^2 \ [f] = 205 \text{N}/mm^2$	満足要求!
	吊耳板抗 剪	$\tau = 7.71 \text{N}/mm^2 \ [\tau] = 125 \text{N}/mm^2$	満足要求!
褐磷法体	吊耳板/主 梁	$\sigma = 17.54 \text{N}/mm^2 \ [f] = 160 \text{N}/mm^2$	满足要求!
淬雍连按	吊耳板/拉 杆	$\sigma = 21.06 \text{N}/mm^2 \ [f] = 160 \text{N}/mm^2$	满足要求!
總外在於	拉杆/主梁	Nv = 14.15kN [Nv] = 50kN	満足要求!
绿油建筑	拉杆/主梁	$\rho = 0.28 \ [\rho] = 1.20$	満足要求!

图 3.1.5-2 安全验算表

图 3.1.5-3 拉杆式悬挑架立面图

6、拉杆式(花篮式)悬挑架(盘扣式)

该模块适用于架体类型为**盘扣架的拉杆式悬挑脚手架**安全计算,即**花篮式脚手架**, 目前可支持单排、双排形式的选择,软件可对盘扣、悬挑梁、吊耳板以及拉杆等一系列 搭设材料进行强度验算,共计 22 项验算内容。同时,用户修改材料参数以及搭设参数 时,右侧图示三维模型会同步刷新,保持与参数一致,便于查看。除方案编制所需要的 安全计算书外,还可以导出设计参数表、验算表、施工平面图、剖面图以及立面图等成 果。

图 3.1.6-1 拉杆式悬挑架计算界面

7、悬挂式吊篮

适用于吊篮安全计算,目前可选择**吊篮的形式包含拉杆式、悬臂式两种**,锚固措施 可选择配重悬挂或与楼层拉结卸荷,钢丝绳强度、配重要求、拉环强度、悬挑横梁抗弯 以及抗压强度均可实现安全验算。

图 3.1.7-1 吊篮计算界面

8、防护棚

适用于钢管扣件搭设的防护棚验算,顶部的防护材料用户可以选择冲压钢脚手架、 木脚手板、竹串片脚手板,或者在材料库可以自定义材料类型进行修改防护层材料。软 件将对板底水平杆、主受力水平杆、扣件、斜杆以及立杆稳定性进行验算,并出具计算 书。

图 3.1.8-1 防护棚计算界面

1.3 板底支撑水平杆验算

1.3.1 荷载计算

均布荷载设计值q' = 1.30×(G_{k1} × a + G_b) + 1.35× Q_k × a

 $q' = 1.30 \times (0.35 \times 0.40 + 0.0397) + 1.35 \times 0.35 \times 0.40 = 0.42 \text{kN/m}$

坠落荷载设计值
 $p'=1.35\times P_k=1.35\times 1.00=1.35 {\rm kN}$

均布荷载标准值 $q = G_{k1} \times a + G_b + Q_k \times a$

 $q = 0.35 \times 0.40 + 0.0397 + 0.35 \times 0.40 = 0.32 \text{kN/m}$

坠落荷载标准值 $p = P_k = 1.00$ kN

1.3.2 抗弯验算

图 3.1.8-3 防护棚计算书

二、模板工程类

1、墙模板-等间距

适用于剪力墙采用主次楞加固的安全计算,以参数对**主楞等间距控制**,计算结果包 含了面板、主楞、次棱以及紧固件的验算内容。

图 3.2.1-1 墙模板-等间距计算

2、墙模板-不等间距

适用于剪力墙采用主次楞加固的安全计算,以参数对**主楞不等间距控制**,即用户可 任意指定主楞之间的间距,更加灵活。计算结果包含了面板、主楞、次棱以及紧固件的 验算内容。

图 3.2.2-1 墙模板不等间距计算

3、柱模板-等间距

适用于结构柱采用主次楞加固的安全计算,以参数对**主楞等间距控制**,计算结果包 含了面板、主楞、次棱以及紧固件的验算内容。同时支持模板加固图的生成。

图 3.2.3-1 柱模板等间距计算界面

验算项目	验算内容	计算过程	结论
面板	抗弯	面板的抗弯强度计算值 $\sigma = \gamma_0 \times M_{max}/W$ = 1.00 × 0.330 × 10 ⁶ /54000 = 6.103N/mm ² ≤ [f] = 15.00N/mm ²	満足要求!
	挠度	面板最大挠度计算值 ν _{max} /L = 1/673 ≤ 1/400	满足要求!
	抗弯	$\begin{split} \sigma &= \gamma_0 \times M_{\max} / W = 1.00 \times 0.441 \times 10^6 / 83330 \\ &= 5.295 \text{N} / mm^2 \leq [f] \\ &= 15.00 \text{N} / mm^2 \end{split}$	満足要求!
次楞	抗剪	$\begin{aligned} \tau &= \gamma_0 \times VS \ / lt = 1.00 \times 3.791 \times 10^3 \\ &\times 62500 / (4166700 \times 50.00) \\ &= 1.137 N / mm^2 \leq [\tau] \\ &= 2.00 N / mm^2 \end{aligned}$	満足要求!
	挠度	次楞最大挠度计算值 v _{max} /L = 1/1717	満足要求!
柱箍	抗弯	$\sigma_{\max} = \gamma_0 \times M_{\max}/W$ = 1.00 × 0.142 × 10 ⁶ /5260 = 26.958N/mm ² ≤ [f] = 205.00N/mm ²	満足要求!
	挠度	柱箍最大挠度计算值 ν _{max} /L = 1/9999 ≤ 1/400	満足要求!
对拉螺栓	强度	对拉螺栓所受的最大拉力 N _{max} = 4.857 × 2 = 9.714kN ≤ N _t ^D = 12.900kN 且 N _{max} ≤ N _{lim} = 26.000kN	満足要求!

图 3.2.3-2 柱模板等间距计算表

4、柱模板-不等间距

适用于结构柱采用主次楞加固的安全计算,以参数对**主楞不等间距控制**,即用户可 任意指定主楞之间的间距,更加灵活。计算结果包含了面板、主楞、次棱以及紧固件的 验算内容。同时支持模板加固图的生成。

图 3.2.4-1 柱模板不等间距计算界面

图 3.2.4-2 柱模板加固图

5、柱模板-方圆扣模板

适用于采用**方圆扣加固形式的柱模板安全验算**,用户可灵活控制方圆扣加固间距, 进而安全验算并生成安全计算书、施工图等成果。

图 3.2.5-1 柱模板方圆扣模板计算界面

图 3.2.5-1 柱模板方圆扣模板加固图

6、圆柱模板

适用于圆柱模板加固安全验算,目前主楞材质可以选择钢带加固,也可以选择钢筋 拉箍两种形式,用户可对主楞之间的间距进行任意指定,以确保完全贴合施工方案,保 证验算工况一致,进而输出安全计算书以及施工图等成果。

7、板模板-扣件式支撑架

适用于支撑体系为钢管扣件式的楼板模板安全验算,用户可根据方案指定的架体参数、荷载参数以及材料参数进行设置,即可快速安全验算并生成安全计算书,同时还可 一键出具架体排布图、架体搭设示意图以及工程量等成果。

◎ 三维 ◎ 平面图 ◎ 剖面图 ◎ 立面图

图 3.2.7-2 架体排布图

图 3.2.7-3 架体搭设示意图

序号	材料名称	规格	单位	工程量
1	可调托撑	B-KTC-600	根/个/套	100
2	对接扣件	对接扣件	根/个/套	300
3	方木	50x100mm	米(m)	216
4	木垫块	150x150x50mm	根/个/套	100
5	直角扣件	直角扣件	根/个/套	1000
6	覆面木胶合板	15mm	平方米(m2)	64
7	钢管	Ф48.3x3.6mm	米(m)	1510

图 3.2.7-4 材料统计表

8、板模板-盘扣式支撑架

适用于支撑体系为**盘扣式的楼板模板**安全验算,用户可根据方案指定的架体参数、 荷载参数以及材料参数进行设置,即可快速安全验算并生成安全计算书,同时还可一键 出具架体排布图、架体搭设示意图以及工程量等成果。

9、板模板-轮扣式支撑架

适用于支撑体系为**轮扣式的楼板模板**安全验算,用户可根据方案指定的架体参数、 荷载参数以及材料参数进行设置,即可快速安全验算并生成安全计算书,同时还可一键 出具架体排布图、架体搭设示意图以及工程量等成果。

图 3.2.9-1 轮扣式支撑架计算界面

10、板模板-套扣式支撑架

适用于支撑体系为**套扣式的楼板模板**安全验算,用户可根据方案指定的架体参数、 荷载参数以及材料参数进行设置,即可快速安全验算并生成安全计算书,同时还可一键 出具架体排布图、架体搭设示意图以及工程量等成果。

图 3.2.10-1 套扣式支撑架计算界面

11、叠合楼板-扣件式支撑架

适用于**叠合楼板-支撑体系为扣件式架体**的安全验算,用户可根据方案指定的架体 参数、荷载参数以及材料参数进行设置,其中叠合板预制、现浇的厚度用户可自行指定, 即可快速安全验算并生成安全计算书,同时还可一键出具架体排布图、架体搭设示意图 以及工程量等成果。

图 3.2.11-1 叠合板扣件式支撑架计算界面

12、叠合楼板-盘扣式支撑架

适用于**叠合楼板-支撑体系为盘扣式架体**的安全验算,用户可根据方案指定的架体 参数、荷载参数以及材料参数进行设置,其中叠合板预制、现浇的厚度用户可自行指定, 即可快速安全验算并生成安全计算书,同时还可一键出具架体排布图、架体搭设示意图 以及工程量等成果。

图 3.2.12-1 叠合板盘扣式支撑架计算界面

13、叠合楼板-轮扣式支撑架

适用于**叠合楼板支撑体系为轮扣式架体**的安全验算,用户可根据方案指定的架体参数、荷载参数以及材料参数进行设置,其中叠合板预制、现浇的厚度用户可自行指定,即可快速安全验算并生成安全计算书,同时还可一键出具架体排布图、架体搭设示意图以及工程量等成果。

图 3.2.13-1 叠合板-轮扣式支撑架计算界面

14、叠合楼板-套扣式支撑架

适用于**叠合楼板-支撑体系为套扣式架体**的安全验算,用户可根据方案指定的架体 参数、荷载参数以及材料参数进行设置,其中叠合板预制、现浇的厚度用户可自行指定, 即可快速安全验算并生成安全计算书,同时还可一键出具架体排布图、架体搭设示意图 以及工程量等成果。

图 3.2.14-1 叠合板-套扣式支撑架计算界面

15、叠合楼板-独立式支撑架

适用于**叠合楼板-独立支撑体系**安全验算,用户可根据方案指定的架体参数、荷载 参数以及材料参数进行设置,其中叠合板预制、现浇的厚度用户可自行指定,即可快速 安全验算并生成安全计算书,同时还可一键出具架体排布图、搭设示意图等成果。

图 3.2.15-1 叠合板-独立支撑架计算界面

16、梁模板-扣件式支撑架

适用于**梁模板-扣件式支撑体系**安全验算,用户可根据方案指定的架体参数、荷载 参数以及材料参数进行设置,软件还支持3层龙骨搭设及验算以适合多种施工工况。可 快速验算并生成安全计算书,同时还可一键出具架体排布图、搭设示意图等成果。

图 3.2.16-1 梁模板-扣件式支撑架

17、梁模板-盘扣式支撑架

适用于**梁模板-盘扣式支撑体系**安全验算,用户可根据方案指定的架体参数、荷载 参数以及材料参数进行设置,软件还支持3层龙骨搭设及验算以适合多种施工工况。可 快速验算并生成安全计算书,同时还可一键出具架体排布图、搭设示意图等成果。

图 3.2.17-1 梁模板-盘扣式支撑架

18、梁模板-轮扣式支撑架

适用于**梁模板-轮扣式支撑体系**安全验算,用户可根据方案指定的架体参数、荷载 参数以及材料参数进行设置,软件还支持3层龙骨搭设及验算以适合多种施工工况。可 快速验算并生成安全计算书,同时还可一键出具架体排布图、搭设示意图等成果。

图 3.2.18-1 梁模板-轮扣式支撑架架体平面图

19、梁模板-套扣式支撑架

适用于**梁模板-套扣式支撑体系**安全验算,用户可根据方案指定的架体参数、荷载 参数以及材料参数进行设置,软件还支持3层龙骨搭设及验算以适合多种施工工况。可 快速验算并生成安全计算书,同时还可一键出具架体排布图、搭设示意图等成果。

图 3.2.19-1 梁模板-轮扣式支撑架架体平面图

20、梁侧模板

图 3.2.20-1 梁侧模板计算界面

三、施工平台类

1、卸料平台(钢管落地)

适用于支撑体系为钢管扣件式的落地式卸料平台安全验算,软件可对支撑杆件、 稳定性、连墙件强度以及地基承载力等进行验算,并出具计算书。同时还可以导出卸 料平台搭设图以及材料统计表。

图 3.3.1-1 卸料平台(钢管落地)计算界面

图 3.3.1-2 卸料平台(钢管落地)计算书

图 3.3.1-3 卸料平台(钢管落地)搭设图

2、卸料平台(型钢悬挑)

适用于型钢悬挑式的成品卸料平台的安全验算,主要对面板、次梁、主梁、钢丝 绳、拉环以及焊缝等进行验算,可快速生成计算书以及悬挑卸料平台构造图及搭设示 意图,便于指导现场施工。

图 3.3.2-1 卸料平台(型钢悬挑)计算界面

图 3.3.2-2 卸料平台(型钢悬挑)计算搭设图

四、起重运输机械类

1、塔吊承台基础

适用于**无桩型塔吊承台基础安全验算**,主要对各类工作状态下的基底应力、抗冲 切承载力、抗弯承载力以及配筋率等进行验算,同时软件还内置了各类塔吊型号,更 能满足大多数工况的使用。在出具安全计算书的同时,还可自动绘制承台基础配筋 图,便于方案编制工作。

图 3.4.1-1 塔吊承台基础计算界面

图 3.4.1-2 塔吊承台基础平面配筋图

图 3.4.1-3 塔吊承台基础剖面配筋图

2、塔吊桩-承台基础

适用于**有桩型塔吊承台基础安全验算**,主要对各类工作状态下的基底应力、抗冲 切承载力、抗弯承载力、基础配筋率、桩身承载力、桩身抗拔、桩身裂缝及配筋等进 行验算,同时软件还内置了各类塔吊型号,更能满足大多数工况的使用。在出具安全 计算书的同时,还可自动绘制承台基础配筋图,便于方案编制工作。

图 3.4.2-1 塔吊桩-承台基础计算界面

图 3.4.2-3 塔吊桩配筋图

3、施工电梯基础(地基基础)

适用于**放置于地基上的施工电梯基础验算**,软件主要对地基承载力、基础抗冲 切、基础抗弯以及配筋等进行验算,最终出具安全计算书,同时还可以自动绘制基础 平面图及剖面图。

工程设置 脚手桌工程	1 模板工程 施工平台 🛔		混凝土工程 — 导入导出 ■	
🤳 🖨 🖻	i 🕰 📾			
填吊承台 填吊杠 地基基础 并以 并以	染粉结构基础 重载汽车计算			
培用基础 施工和	电样基础 量能汽车			
1			◎三帅 ◎平面图 ◎制	新聞
工程管理	构件名称 基础式施工电梯_1			
基础式班工电师	规范依据 《建筑施工升降机安装	、使用、拆卸安全技术规程 ~		
- MATERIAL CONTRACTOR	升降机参数 地基基础			
	施工升降机型号	SC8200/200		
	用笼形式	双用遊 ~		
	限设总高度(a)	40		
	标准节长度 (m)	1.508		
	标准书重(kg)	167		
	单个吊笼重(kg)	1460		
	(電差数重(kg)	2000		
	对最重量(kg)	1300		
	底郑围栏重(kg)	1480		
	其他配件总重量(kg)	200		
	导轨架长le(a):	0.65		
	导轨架宽Bo(a)	0.65		
	第工电梯综合安全系数。	2.100		
	结构重要性系数 V0	1.00		
	可变菌動调整系数vL	0.60		
重给模型				
危大工程判定			-	Sector States
快速试解			L 👗	
计算书			-Y	
帮批表			≤ ≰×	
审核素				
材料统计			分类	
成本別算			物件过滤	
除工器紙			释放qCadDataBaseImplement	
-7954.076230.48.8399.92				

第1章 计算依据

(達筑结构可靠性设计統一标准)GB50068-2018 (混凝土结构设计规范)GB50010-2010 (達筑地基基础设计规范)GB50007-2011 (建筑结构荷载规范)GB50007-2011 (销结构设计标准)GB50017-2017 (试验城正升降机安乘。使用、拆卸安全技术规程》(JGJ215-2010) SCD200/200 施工升降机使用说明书

第 2 章 参数信息

2.1 施工升降机基本参数

施工升降机型号	SCD200/ 200	吊笼数量 Ne	2
架设总高度 H(m)	40	标准节长度 hn(m)	1.508
标准节重 G1(kg)	167	单个吊笼重 G2(kg)	1460
底架围栏重 G3(kg)	1480	对重重量 G4(kg)	1300
吊笼载董 G5(kg)	2000	其他配件总重量 G6(kg)	200
施工电梯综合安全系数n	2.1		

2.2 施工升降机布置参数

导轨架截面长 Lc(m)	0.65	导轨架截面宽 Be	0.65
.3 地基参数			
地基土承载力设计值 fa(kN/m)	80	折减系数 v	0.8
.4基础参数			
其冲得路中四度丝缩	C30	其2014度 Th(m)	4 500

基础宽度 Bb(m)	3.500	基础高度 Hb(m)	0.500
承台底部长向钢筋间距(mm)	150	承台底部长向钢筋直径(mm)	12
承台底部长向钢筋型号	HRB400	承台底部短向钢筋间距(mm)	150
承台底部短向钢筋直径(mm)	12	承台底部短向钢筋型号	HRB400
承台上部长向钢筋间距(mm)	150	承台上部长向钢筋直径(mm)	12
承台上部长向钢筋型号	HRB400	承台上部短向钢筋间距(mm)	150
承台上部短向钢筋直径(mm)	12	承台上部短向钢筋型号	HRB400

第 3 章 施工升降机荷载计算

表 3-1 升降机荷载			
参数	公式	结果	
标准节数 量 <i>N</i> n	$N_n = \frac{H}{h_n} = \frac{40.0}{1.5}$	27	
施工升降机自重 <i>G_{ck}(kg)</i>	$\begin{split} \textit{Gsk} &= \textit{G}_2 * \textit{N}_c + \textit{G}_3 + \textit{G}_4 * \textit{N}_c + \textit{G}_6 + \textit{N}_n \\ & * \textit{G}_1 + \textit{G}_5 * \textit{N}_c \\ & = 1460.0 * 2 + 1480.0 \\ & + 1300.0 * 2 + 200.0 + 27 \\ & * 167.0 + 2000.0 * 2 \end{split}$	15709.0	
施工升降机荷载 $P_0(kN)$	$Pe = Gek * g = \frac{15709.0 * 10}{1000}$	157.1	
施工升降机荷载标准值Fek(kN)	Fek = n * Pe = 2.1 * 157.1	329.9	
施工升降机荷载设计值F _e (kN)	Fe = 1.3 * Fek = 1.3 * 329.9	428.9	

第4章 地基承载力计算

会社	<u> </u>	仕甲
3238	414	2026
承台自重标准值F _{bk} (kN)	$F_{bk} = 25 * B_b * L_b * H_b$ = 25 * 4.50 * 3.50 * 0.50	196.9
承台自重设计值F _b (kN)	$F_{\rm b} = y_0 * 1.3 * F_{\rm bk} = 1.0 * 1.3 * 196.9$	255.9
竖向力设计值N(kN)	$N = F_{\rm b} + F_{\rm e} = 255.9 + 428.9$	684.8
地基承載力P _k (kN)	$P_{\rm k} = f_{\rm a} * B_{\rm b} * L_{\rm b} * v = 80.0 * 4.5 * 3.5 * 0.8$	1008.0

◎酒走安水

第5章 基础承台验算

图 3.4.3-2 施工电梯基础计算书

4、施工电梯基础(梁板结构基础)

适用于**放置于楼板上的施工电梯基础验算**,软件主要对地基承载力、基础抗冲 切、基础抗弯以及配筋等进行验算,用户也可选择楼板底部**是否布置回顶架体**并参与 验算,最终出具安全计算书,同时还可以自动绘制基础平面图及剖面图。

图 3.4.4-1 施工电梯基础计算界面

图 3.4.4-2 施工电梯基础剖面图

5、重载汽车计算(楼板上车)

适用于**重载汽车在结构楼板上方的安全验算**,用户可以通过参数控制来调整楼板 厚度、结构跨度以及梁尺寸配筋等等信息,以确保和图纸相吻合。除了对结构楼板的 承载力验算之外,用户还可选择是否布置回顶架体并验算,工况选择自由度较高。最 终出具计算书及施工图纸辅助方案编制。

图 3.4.5-1 重载汽车计算界面

图 3.4.5-2 回顶架体排布图

五、施工临时设施类

1、临时用水计算

适用于工程项目临时用水量计算,软件主要对工程总用水量、机械用水量、工地 生活用水量、生活区用水量、消防用水量、总用水量以及临时网路供水管内径等进行 计算,便于临水方案编写以及临水设施的铺设施工,精准计算、合理规划。

图 3.5.1-1 临时用水计算界面

	经过计算得到 $q_1 = rac{1.1+10485650.09+1.5}{228+7-6-3500} = 1.32 L/s$				
第1章 施工临时用水计算书	1.3 机械用水量计算				
建筑工地临时供水主要包括:生产用水、生活用水和消防用水三种。生产 用水包括工程施工用水、施工机械用水。生活用水包括施工现场生活用水和生 活区生活用水。	施工机械用水量计算公式: $q_2 = K_1 \sum \left(\frac{Q_2 * N_2 * K_3}{8 * 3600} \right)$				
1.1 计算依据	具屮: q ₂ ───施工机械用水里(L/s);				
《建筑施工手册》第五版 《建筑施工计算手册》(第四版)江正荣编著 《施工现场调防安全技术规范》GB50720-2011	K_1 — 未预见的施工用水系数,取 1.05; Q_2 — 同一种机械台数(台),取值如下表; N_2 — 施工机械台班用水定额,取值如下表; K_2 — 施工机械台班用水定额,取 2				
1.2 工程用水量计算	施工机械用水定额列表如下:				
工地施工工程用水量可按下式计算:	序号 机械名 型号 単位 耗水量 決算系 机械台 每台班 京 歌 型号 単位 N1(L) 数 数 Q2 量				
$q_1 = K_1 \sum_{(T_1 + b + 8 + 3600)}$ 其中:	1 空圧がし xxxx M [*] 3/min: 台 残圧 40 1 2 80.00				
q,——施工工程用水單(L/s);	2 锅炉 xoox 台·h 1050 8 1 8400.00				
K1——未预见的施工用水系数,取 1.1;	经过计算得到 $q_2 = rac{1.05+8480.00*2}{8*3600} = 0.62 L/s$				
Q1——年(季)度工程量(以实物计量单位表示),取值如下表; N1——施工用水定额,取值如下表;	1.4 工地生活用水量计算				
71年(季)度有效工作日(d),取 228 天; b毎天工作班数(班),取 2 ア	施工工地用水里计算公式: $q_3 = \frac{p_1 + N_3 + K_4}{1 + 0 - 2 \le 0.00}$				
▲2一一用水小333系级,取1.3 工程施工用水完额列表如下:	其中:				
序号 用水名称 単位 用水定額 工程量 Q1 年度耗水量 (N1401) N1(L) 工程量 Q1 (N1*01)	q ₃ ——施工工地生活用水里(L/s);				
洗菜浸凝土 1 1 2 1 1 全部用水 M*3 1700 5800 9860000.00	P_1 一一施工现场高峰期生活人数,取 845人; N_s 一一施工工地生活用水完额,取值如下表;				
2 砌筑工程全 郵用水 M°3 150 1675 251250.00	K ₄ ——施工工地生活用水不均匀系数,取 1.3;				
3 抹灰工程全 部用水 M ² 2 30 12480 374400.00	b——每天工作班数(班), 取 2; 施工工地用水定额列表如下:				

图 3.5.1-2 临时用水计算书

2、临时用电计算

适用于工程项目临时用电计算,软件主要对工程中总、分配电箱用电以及变压器容 量进行验算,辅助编制临时用电施工方案以及临电设施施工,精确计算、合理规划。

图 3.5.2-1 临时用电计算界面

图 3.5.2-2 用电系统图

六、混凝土工程类

1、泵送混凝土施工计算

适用于工程**泵送混凝土施工**计算,软件可根据用户所指定的施工工程量以及其他 参数,自动计算泵送效率、运输车运力、泵送阻力等是否满足要求,以便于合理规 划。

图 3.6.1-1 泵送混凝土施工计算界面

		搅拌运输车平均行车速度 S0	30
		每台搅拌运输车总计停歇时间 T1	0.75
第1章 泵送混凝	土施工计算书	运输车台数:	
		$N_1 = \frac{Q_1}{60 + V_1 + \eta} * (\frac{60 + L_1}{50} + T_1 * 60) = 45.9/(60x)$	6.0x0.92)x(60x10.0/30+0
.1 计算依据:		台	
1 21 1 4 10 19 27 1 27 1 28 20 20 20 20 20 20 20 20 20 20 20 20 20	C 2010		
1、《大体积减凝工施上标准》GB3049 2、《冯·姆士有送施工技术规程》IGUT	0-2018	1.5 泵送能力计算	
 2、《建筑施工计算手册》:江正茔编差 	10-2011	*1 / 1 \PV&	W.43.45.+
		波斯士泰統定工作压力 Pa(MPa)	471
1.2 混凝土泵每小时实际输出量计算		「海豚土幼咲管直径 d(mm)	125
		混凝土坍落度 S1(mm)	18
表 1-2-1 混凝土	泵参数表	12/11:	0.3
作业效率η	0.6	混凝土在输送管内的平均流速 V2(m/s):	0.56
配管条件系数αl	0.85	径向压力与轴向压力之比 a2:	0.9
每台混杀主张的最大物出量 Qmax	90	水平管总长度L(m):	120
技術縦工家母小时販大制工里计具 QI	: 	垂直向下及傾斜向下管总长度(m):	0
$Q_1 = \eta * u_1 * Q_{\max} = 0.000.05000 = 45.50$		垂直向上管换算长度(m):	37
13湿凝十互计算		倾斜向上管换算长度(m):	8.598
		软管换算长度 f(m)	20
表 1-3-1 混凝土(NT 1000000000000000000000000000000000000	弯管换算长度 b(m)	8
混凝土浇筑体积量 Q	360	变径锥形管换算长度 t(m)	24
每小时实际输出量 Q1	45.9	1.5.1 配管的水平拖笛长度	
混凝土泵送计划施工作业时间 T0	4		
混凝土泵的台数:		$L = l + kh + fm + b * n_1 + t * n_2 = 120.0$	+0.0+37.0+8.6+20.0+8.0
$N_2 = \frac{Q}{Q_1 + T_0} = 360.00/(45.90 \times 4.00) = 2 \Leftrightarrow$		217.6m	
-1 - 0		1.5.2 混凝土泵车最大输送距离	
1.4运输车台数计算			
		粘着系数: K ₁ = (3.00 - 0.01 * S) * 10 ²	= (3.00 - 0.01 * 18) * 10
表1-4-1运输4	F参数表	 速度 変数 $V_{2} = (4.00 - 0.01 + S) + 10^{2}$	- (100 001 + 18) +
每小时实际输出量 Q1	45.9	$\chi_{\mathbf{X}}$ $\chi_{\mathbf{X}$ $\chi_{\mathbf{X}}$ $\chi_{\mathbf{X}}$ $\chi_{\mathbf{X}}$ $\chi_{\mathbf{X}}$ $\chi_{\mathbf{X}}$	- (4:00 - 0:01 + 10) *
每台混凝土搅拌运输车容量 V1	6	10 ⁴ =382.0Pa.s/m	
搅拌运输车容量折减系数 nv	0.92	混凝土在水平输送官内流动每米产生的	围刀顶失:
AND ANY A REAL AND AN AND AND AN ANY AND AN ANY ANY ANY ANY ANY ANY ANY ANY ANY	10		

图 3.6.1-2 泵送混凝土施工计算书

2、大体积混凝土保温计算

适用于工程中**大体积混凝土保温**计算,软件主要对混凝土浇筑体表面保温层厚 度、延续时间、热阻系数、蓄水深度等进行验算,辅助混凝土保温工作。

图 3.6.2-1 大体积混凝土保温计算

第四章 施工临时结构计算软件功能简介

基于盈建科自主知识产权的 BIM 图形平台及有限元核心计算技术,面向施工单位 工程技术人员提供的专业三维仿真设计计算工具,解决工程施工过程中遇到的临时结 构设计计算难题。

一、建模功能

1、楼层管理

用户在建模之前,可以根据工程实际在软件中设置楼层信息,例如楼层数量、楼 层标高等等信息。

	轴线网格	构件布置	楼板布置	修改 放置	导入导站	1 DWG转担	<u>施工结构</u> ;	算	
	6	3 三维 6	DWG转换						
工程树 成果管理									
日日本		■ 楼层管理						?	×
●□□荷載工況	組合	楼层列表					新增楼层		
m MTX		序号	层名	层底高	层顶高	层商(m)	层名:	输入层名	
		1	第1自然层	0.000(1F)	4.000(2F)	4.000	层底高:	0.000(1F) 🗸	
							层顶高:	4.000(27) 🗸	
							添加	明修余	
									_
							确定	取消	
11									

图 4.1.1-1 楼层管理

2、轴网网络

软件支持**手动绘制轴线网络、参数化布置轴线网络**,以辅助构件布置及绘制,操 作更加便捷。

图 4.1.2-1 轴线网络

3、构件布置

轴线网络绘制完成之后,用户可以选择已绘制的网络进行布置构件,也可以使用 【绘梁线】、【绘墙线】等构件手绘功能,进行任意布置构件。

图 4.1.3-1 结构柱布置

图 4.1.3-2 结构梁布置

4、楼板布置

软件将根据结构梁、墙围蔽的情况,自动生成结构楼板。关于楼板厚度、楼板错 层、房间开洞等功能完备,更加人性化的修改功能。

图 4.1.4-1 修改板厚

图 4.1.4-2 楼板开洞

5、导入导出

建立完成的结构模型,支持与其他 YJK 产品实现模型交互,除了可以导入 JSON 模型之外,同时还支持导出 IFC、Sqlite 等格式文件。

图 4.1.5-1 导入导出

6、DWG 转换

除手动建模之外,该软件内置了 DWG 转换功能模块,用户可以导入工程中梁结构施工图,进行一键分析,软件则自动识别图纸中的图层信息、楼层表信息以及标注信息,自动转换成三维模型,加快模型建立效率。

图 4.1.6 DWG 导入

图 4.1.7 DWG 转换模型

二、施工结构计算

1、建模

①参数化模型

软件提供了外脚手架、板架体、梁底架体以及吊篮等参数化模型插入的功能,用 户可以根据方案拟定的搭设参数对模型进行设置并生成,其中架体的受力面、构件的 连接关系均自动生成,提升了标准模型建立的效率。

图 4.2.1-1 外脚手架模型

图 4.2.1-3 吊篮模型

②网络布置

除了参数化建模之外,软件仍支持用户自行建立轴网进行手动建模,更能适应各 类的施工工况。例如在正交网络中可以建立二维、三维轴网,圆弧网络中可以建立圆 弧线段,或者是直接采用直线绘制命令修改轴网。

图 4.2.1-4 轴网布置

③构件布置

轴线网络布置完成后,用户可以在已布置完成的线段上方直接选择布置构件,软 件将根据选中的区域中,自动布置构件。

图 4.2.1-5 立杆布置

图 4.2.1-6 水平杆布置

2、荷载约束

模型建立完成后,即可进行荷载约束处理,用户可以使用【蒙皮荷载】进行蒙皮 的生成,即模拟该模型所受力的部位。例如,该模型上方将承受荷载,可在模型上方 布置一层蒙皮,对其指定并生成荷载,模拟受力。同时,软件还可设置各杆件的杆端 刚度以及构件的连接关系。

图 4.2.2-2 生成蒙皮

图 4.2.2-3 指定荷载

图 4.2.2-4 生成荷载

图 4.2.2-5 节点约束设置

3、有限元计算

荷载约束设置完成后,可将三维模型转化为三维有限元模型进行有限元计算,转 化前可以在模型设置中设置基本的参数信息,例如架体类型、架体高度等参数。

图 4.2.3-1 新建三维有限元模型

模型新建完成后,用户可在设计参数中设置结构重要系数、荷载分项系数、荷载 组合系数等参数,设置完成后即可进行有限元计算。

🚧 荷载参数			×
_ 组合系数			
参考规范	建筑结构可靠性	设计统—标准》GB50068-2018	~
☑ 结构重要性系数	1	设计使用年限活荷载调整系数	0.9
恒荷载分项系数	1.3	活荷载分项系数	1.5
活荷载组合值系数	0.7	风荷载组合值系数	0.9
		.任 (有限) 1 7211	Trassic

图 4.2.3-2 有限元计算

计算完成后,用户可在设计成果中查看构件的应力比、构件内力以及变形情况, 并导出相关的计算书。

图 4.2.3-3 应力比查看

图 4.2.3-3 内力查看

图 4.2.3-4 变形值查看

图 4.2.3-5 计算书生成

第五章 结构工具箱软件功能介绍

基于盈建科结构设计计算解决方案,面向工程技术人员提供的专业结构构件设计计 算工具,对常见的混凝土结构构件、钢结构构件、型钢混凝土构件、构件鉴定加固等进 行设计计算。主要包含了普通混凝土构件、钢结构构件、鉴定加固等一系列计算功能。

一、普通混凝土构件

1、梁、柱截面承载力验算

目前最新的版本中,将梁、柱正截面与斜截面计算整合到同一对话框内,方便参数 输入并可以同时进行计算输出。优化计算书中的计算过程,步骤更加详细。体现在分别 对计算配筋与构造配筋进行计算,构造配筋计算可以根据相应规范条文,考虑不同抗震 等级和构件类型等,自动确定最大配筋率与最小配筋率等。参数页面内提供简化计算结 果的显示,方便查看。

图 5.1.1-1 梁截面承载力验算

 載面承載力计算 社编号 IZ1 读取 计算类别 ④ 準備压 双偏压 ② 斜截面计算 截面亮度 h(m) 400 截面亮度 h(m) 400 注: h=0时为图形截面柱。 下翼猿竞度 h(m) 0 	 截面内力 设计轴力(压力正) 10 线X轴设计弯矩(LN·m) 月端终X轴设计弯担 (XI·n) 线Y轴设计弯矩(LN·m) 月端终Y轴设计弯距 (XI·n) 月端终Y轴设计弯距 (XI·n) 日端弯担与设计弯距同例受压同 月隙受压异等 X方向剪力设计值 中古沙社(面) 	计算结果 柱正截面承载力计算: 全部纵向阴筋计算面积 人本。前:= 0.00 mm2 全部纵向阴筋镜力磁筋面积 人本。前:= 1040.00 mm2 全部纵向阴筋镜力截筋面积 人本。前:= 0.00 mm2 全部纵向阴筋镜力截筋面积 人本。前:= 0.00 mm2 全部纵向阴筋髓力 和量量和 大型和量量和 和量量 和量 和		400
下翼張高度比f(mm) 0 上翼猿克度比f(mm) 0 上翼猿高度比f(mm) 0 上翼猿高度比f(mm) 0 下翼猿痛心(右为正) 0 上翼猿痛心(右为正) 0 月前合力点至边缘距离。 42.5 水向计算长度(mm) 3000 村料 混凝土强度等级 C30 ~ 線防風度等级 HE3400 ~ 箍筋强度等级 HE3400 ~	Y方向剪力设计值 ① ·····		400	

图 5.1.1-2 柱截面承载力验算

2、板冲切计算

用户可设置相应的截面信息、抗震信息以及荷载信息后,软件将自动计算**结构板所** 能承受的最大剪应力以及箍筋最小配筋面积。

板柱受冲切承载力计算	>
	荷载信息
	材料信息 混凝土强度等级
	箍筋等级 HRB400 ~
	箍筋间距s(mm) 70
编号: CQ1 读取	(1)煎向力: 〒=0.97Mpa
截面信息 集中荷载作用面宽度b(mm) 400	(2)箍筋面积: Asv=181.78mm2,Asv>Asvm
集中荷载作用面长度1(mm) 400	
截面高度L(nm) 200	
抗震信息	
抗震等级 三级 🗸 内力组合 地震组合 🗸	
全国高规性能设计构件类别 耗能构件 ~	计算结果 生成计算书 退出

图 5.1.2-1 板冲切计算

3、节点核心区计算

用户可设置相应构件截面尺寸、截面内力、构件材料属性等参数,软件将对**节点核** 心区构件水平截面、节点核心区配筋以及节点核心区的构造配筋进行验算。

节点核心区受剪承载力计算		×
编号: JD1 读取 截面尺寸(mm) 柱截面宽bc(圆:直径) 500 柱截面宽bc(圆:0) 500 梁截面宽bb 300 梁截面宽bb 600 梁柱編心距e0 0 梁柱編心距e0 0 梁柱論方法修取時度		200
※12加至25%124% 33 截面内力 节点剪力设计值(kx) 200 柱轴力设计值(kx)(压为正) 0	····································	
日月4月 程架节点计算结果: 承载力抗震调整系数 ¥ № 0.05 司不进行和任愛野沮承載力计算 构造離筋面积 Asymin = 135.00 mm2 构造体积配適率 P symin = 0.60 %	(, 仅按构造配筋。 500	

图 5.1.3-1 节点核心区计算

4、附加钢筋计算

用户可自行选择计算类型,例如**已知集中荷载求附加横向钢筋**或**已知附加横向钢筋 求集中荷载**。当选择前者时,除了需要设置箍筋信息(不包含直径)、吊筋信息(不包含 直径)以及构件信息之外,还需要设置集中荷载值,已计算横向配筋面积。当选择后者 时,则是输入配筋信息以计算集中荷载。

加钢筋计算		
	 	HRB400 ~ 14 100 2 3
构件名称 L_1 i 计算参数 计算类型 已知集中荷载求附加欄向钢 附加钢筋並型 (仕先達25835	取 用筋信息 吊筋等级 売 予 吊筋直径(mm) 二 吊筋根数	HRB400 ~ 10 2
集中荷载(kN) 426.	114 吊筋与水平面夹角(°)	45
重要性系数γ0 1	计算结果	
构件信息 200 次梁宽度(mm) 200 次梁高度(mm) 400 主梁高度(mm) 500	附加箍筋(每0) 3C14@ 附加箍筋面积 1847.26m 附加吊筋 无	100(2) nm2
纵筋合力点至边缘距离(mm) 42.5	计算计	算书 取消

图 5.1.4-1 节点核心区计算

5、挠度和裂缝计算

①梁挠度计算

软件可根据用户设置的截面尺寸信息、混凝土属性及配筋信息以及其他参数后,软 件将自动计算受拉钢筋配筋率、挠度增大影响系数、短期刚度、长期刚度以及挠度值。

挠度计算		×
	钢筋混凝土属性及配筋 混凝土等级 主筋等级 受拉钢筋面积As(mm2) 受压钢筋面积As'(mm2)	C20 ~ HRB400 ~ 1000 150
编号: Defl)	参数 梁端支撑类型 准永久组合弯矩值Mq(kii+ 上部纵筋合力点至边缘距 下部纵筋合力点至边缘距	简支 inin 150 高(nm) 40 离(nm) 40
截面尺寸 截面形式 短刑 截面宽度b(mm) 200 截面高度h(mm) 500	(1)受拉锅前高额车:0 te* (2)投售增大影响系数:0 t (3)投销消偿:B=24017.11 (4)长期闲偿:B=21379.95 (5)投度:f=5.05mm	=0.02 =1.94 DKN • m2 SKN • m2
受拉区翼缘宽度bf(mm) 0 受拉区翼缘高度bf(mm) 0 受压区翼缘宽度bf(mm) 0		
受压区翼缘高度hf '(mm) 0 计算跨度10(mm) 200	0 计算结果 生成计	·算书 退出

图 5.1.5-1 挠度计算

②梁裂缝计算

软件可根据用户设置的截面尺寸信息、混凝土属性及配筋信息以及其他参数后,软 件将**自动计算受拉钢筋配筋率、受拉钢筋应力、应变不均匀系数以及裂缝宽度。**

裂缝计算		×
		(利防混凝土属性及配筋 混凝土等级 220 → 以防等级 IRB400 → 受拉将筋面积As(m ²) 226 以筋等效直径deq 17.14 以防混凝土保护层(m) 25
编号: Crai	读取	 参数 弯矩准永久值Mq(kH*m) 20 受力特征 抽心受拉 > 袖力准永久值Mq(KM) 0
截面尺寸(nm) 截面形式 截面宽度b(nm) 截面高度h(nm) 受拉区翼缘宽度bf(nm) 受拉区翼缘高度hf(nm) 受任区翼缘宽度bf(nm)	短形 〜 200 450 0 0	(1)受社(封稿理新章: ρ t = 0 = 0 100 (2)受社(封稿に力) : s s = 0 = 6 8 (3) (前堂大坊勾系数: ¥ = 0 6 8 (4)製罐改度: W max = 0 28mm
受压区翼缘高度hf(mm) 计算长度(mm)	0 3000	计算结果 生成计算书 遇出

图 5.1.5-2 裂缝计算

6、其他构件

①楼梯计算

用户可选择 AT、BT、CT、DT4 种楼梯类型进行计算,设置楼梯设计信息、几何信息、 荷载信息等参数后,软件会自动验算配筋、挠度以及裂缝是否满足要求。

楼梯计算			×
	楼梯设计信息 混凝土等级 C30	~ 钢筋等级	HRB400 \vee
	钢筋保护层厚度 20 。(mm)	纵筋合力点到边缘 距离as(nm)	25
	楼梯几何信息		
	踏步数 n 10	梯段长Lt(mm)	2000
	楼梯高 H(mm) 1500	梯板厚t(mm)	200
b1Lt=(n-1)%bb2	高端平台长L1(mm) 300	低端平台长L2(mm)	300
	高端梯梁宽b1(mm) 200	低端梯梁宽b2(mm)	200
継続信号 IT1 遠 取	荷載信息		
	可变荷载(kN/m2) 2.5	可变荷载分项	1.5
授师尖型 AI 授师 ✓ □国月現際 製貓挽度	栏杆线荷(kM/m) 0.2	永久荷载分项 系数 YG	1.3
☑ 是否计算換度裂缝 ☑ 是否按裂缝控制选筋	面层荷载(kN/m2) 1.7	准永久值系数↓	0.5
计算跨度Lo<7m, 挠度限值 Lo/ 200	结构重要性系数 1		
7m≪计算跨度Lo≪9m, 挠度限值 Lo/ 250	其他參對		
计算跨度Lo>9m, 挠度限值 Lo/ 300 裂缝限值(mm) 0.3	□ 考虑支座嵌固对弯矩的影	响 支座与跨中钢筋 比例	0.25
✓考虑踏步对梯板挠度影响	计算配筋时, 弯 0.8 拓折 葉 α 1	钢筋直径取值(nm)	
	计算影组时, 查 0.8	6, 8, 10, 12, 14	
(一)板配筋 (1)時中辺発・Φ2@120(419.0mm2) > 400.0mm2 港屋	拒折減α2	钢筋间距取值(mm)	
 (1)時中14期5, 46億 120(416.5mm2) > 400.0mm2, 満定 (2)支座钢筋: 46億 200(141.4mm2) > 104.7mm2, 満足 (二)接度給算 	计算挠度时,弯 0.8 矩折瑊α3	100, 120, 150, 200	
fmax = 1.3mm < [f] = 11.0mm, 满足	计算	详细计算书 ~	计算书
(二)%9種短具 ωmax = 0.02mm < [ω] = 0.3mm,満足	恢复	黑认 修改配筋	退出

图 5.1.6-1 楼梯计算

②地下室外墙计算

软件主要对**地下室外墙配筋结果、裂缝**进行计算,在计算前用户需要设置相关参数, 例如地下室外墙几何参数、混凝土与钢筋材料、荷载信息等参数。

8下室外墙计算	Ĩ.					>
编号: DTQ 地下室外墙几 地下室层数 室内外高差(a 注:地下室 顶边支承方式 B1	1 L何信息 m) 0.3 室顶标高高子 代 简3 层高(m) 3	读取 F外地坪时大 支 指厚(mm 350		荷载信息 地下水理采(m) 土天然容重(kH/m3) 土地和容重(kH/m3) 土部和容重(kH/m3) 上部酒载一时(kH/m) 上部酒载(kH/m) 上部酒载(kH/m) 地面性载(kP-a)	0 18 18 0.5 0 0 0 0	计算结果 地下室外局配筋结果: 位置 计算As 选筋 实面As 配筋率 时层内侧 875 B120120 942 0.27% 外例 875 B120120 942 0.27% 外例 875 B120120 942 0.27% 影1层内侧 0.01mm 满足要求 外例 0.02mm 满足要求
混凝土与钢筋 混凝土强度等 钢筋强度等级	訪材料 採扱 C3C 後 HRE	1	~	☑ 人防荷载 位置 B1	等效静荷载(kPa))	
小纵筋保护层 内纵筋保护层 竖向配筋方法 裂缝限值(mm) □裂缝控制	s(mm) 25 g(mm) 20 s 按) 0.2 配筋	中弯	~	计算选项 活载准永欠值系数 水压准永欠值系数	0.5	
荷载组合分项	「系数表					
组合 平时组合 战时组合	人防荷载 0.00 1.00	土压力 1.30 1.30	水压力 1.50 1.50	地面活载 上部 1.50 1.30 0.00 1.30	巨载 上部活载 1.50 0.00	计算计计算书 退出

图 5.1.6-2 地下室外墙计算

7、特殊构件

①矩形水池璧裂缝计算

用户需设置水池截面信息、材料属性及配筋、荷载信息等参数,软件将对**受拉钢筋 有效配筋率、受拉钢筋应力、应变不均匀系数以及裂缝宽度**等进行验算,并出具计算书。

矩形水池裂缝计算		×
	材料属性及配筋 混凝土等级 C20 〜 纵筋等级 受拉钢筋面积As(mm2)	HRB400 V 200
e	受拉树筋寺效直径(mm) 外层纵向受拉钢筋边缘至受拉区底边的距离(mm)	50
	何執信息 准永久组合轴力Ng(kN) 准永久组合弯矩Mg(kN*m)	100 20
编号: Pool1 读取 截面信息 腹板宽度b(mm) 200 高度h(mm) 400 上部纵筋合力点至边缘距a´s(mm) 40	(1)受拉钢筋有效配筋率: P te=0.0050 (2)受拉钢筋应力: σt=151.66Pa (3)応受不均匀系数: fai=0.40 (4)裂缝宽度: ωmax=0.12mm	
下部纵筋合力点至边缘距as(mm) 40	计算结果 生成计算书	退出

图 5.1.7-1 矩形水池璧计算

②圆环柱计算

用户需设置圆环柱截面信息、荷载信息及抗震信息,软件将对**配筋面积、配筋率以** 及圆心角比值进行计算。

圆环柱正截面配筋计算	×
	荷载信息 混凝土强度等级 30 纵向钢筋等级 HRB400 → 軸力设计值(KX) 200 本截面弯矩设 150 (受压力+) 200 本截面弯矩设 150 只端截面弯矩 150 全国高规性能 耗能构件 → 设计值(KX,m) 150 全国高规性能 耗能构件 → 设计值(KX,m) 150 全国高规性能 耗能构件 → 设计值(KX,m) 150 全国高规性能 耗能构件 → 位计有件类别 150 全国高规性能 耗能构件 → 位计有件类别 150 全国高规性能 耗能构件 → 位计有件类别 150 全国高规性能 无能构件 →
编号: Annulus1 读取 截面信息 结构类型 非框架结构(非异 > 短环外径(mm) 400 纵筋合力点至截面近边缘距离(mm) 40	(1)全載计算面配筋面积: As=4340.56mm2 (2)全載面构高配筋面积: As=4340.56mm2 (3)全載面配筋面积: Asall=As=4340.56mm2 (4)全載面面筋距率: A all=4.61% (5)对应于受压区混凝土截面面积的圆心角与2π的比值: α=0.39
计算长度 (mm) 3600	计算 退出

图 5.1.7-2 圆环柱计算

二、型钢混凝土构件

1、型钢砼梁承载力

软件支持**型钢砼梁、钢板连梁**两种类别的计算,用户需设置截面信息、内力、材料 等相关参数后,软件将对**受拉钢筋面积及配筋率**进行计算。

型钢混凝土梁截面计算			×
梁编号: L1 读取	截面内力 设计弯矩M(kN.m) 900	10	
梁类别	设计剪力V(kN) 200		
	<u>剪跨比入(均布入=1)</u> 1		-
□ 正截面计算 □ 斜截面计算	材料 混凝土强度等级 □ C30 ↓		
截面尺寸 (mm) 截面宽度 B 300	纵向钢筋设计强度fy 360 🗸		
截面高度h 800	箍筋设计强度fyv 270 🗸		000
梁上筋至边缘距离 42.5 梁下筋至边缘距离 42.5	□ 是否自定义 0 型钢强度		യവ
计算跨度 6000	型钢与钢板		
箍筋间距s 100	型钢定义		<u> </u>
其他参数	墙体钢板设置 单层钢板 🗸		<u> </u>
抗震等级 5 非抗震区 ~	钢板厚度b 10		
内力组合 非地震组合	钢板高度h 500		
型約谷梁正蔵面 (1)計算受拉約筋面积: As=2026. 配筋率 P=0.0084	23mm2, 计算书 退出	\$0,200,50 1,300 1,300	

图 5.2.1-1 型钢砼梁承载力计算

2、型钢砼柱承载力

用户需设置截面尺寸、内力设计值、截面材料等参数信息后,软件将对**正截面单侧** 钢筋面积、纵向钢筋最小配筋面积以及斜截面箍筋面积、体积配筋率进行计算。

土 均泥炭工土在或国和因为计算 柱编号: C1 读取 计算类别 ⑦ 正載而计算 分射截而计算 截面宽度b(mm) 800 截面高度b(mm) 800 截面高度b(mm) 800 型 钢 定 火 柱纵筋至边缘距 42.5 载动简度b(mm) 100 销价简距s(mm) 100 计算参数 抗震等级 四级 内力组合 非抗震组合	 載面尺寸 弯拒设计值#(kx ・ m) 100 相力设计值#(kx) 100 剪力设计值#(kx) 100 剪方设计值#(kx) 100 剪辨比へ(Hu/2ho) 1.5 載面材料 混凝土强度等级 C30 細防强度等级 HB400 論防强度等级 HB400 自定义型將發度 型附设计强度 205 二考虑轴压力二阶效应 	20 70		205 390 205
抗震等级 四級 の 内力組合 非抗震組合 の 甘華保附前面积 Ax = 2560.00 全部以同時前面积 Ax = 2560.00 全部以同時前面和 Ax = 2560.00 全部以同時前面和 Ax = 2560.00 mm2 全部以同時前面和 Ax = 2560.00 mm2 计算体预面积 Ax = 441.00 mm2 计算体积固定 P = 441.00 mm2	□ 考虑轴压力二阶效应 nm2 in = 5120.00 nm2 计算书 退出	,	225 350 225	

图 5.2.2-1 型钢砼柱承载力计算

3、型钢混凝土节点核心区

用户需设置截面尺寸信息、内力信息、材料信息以及其他参数后,软件将对**承载力** 抗震调整系数、节点核心区构造箍筋面积以及构造体积配筋率进行计算。

型钢混凝土节点核心图	区受剪承载力计	算			×
节点编号: J1 截面尺寸(mm) 柱截面宽bo 柱截面宽bo 揉截面宽bb 梁截面宽bb 梁拉钢跟板高度bw 梁柱編心距e0 梁正筋至边缘距离 计算结果	读取 500 500 300 600 20 400 0 35 35	截面内力(kii) 节点剪力设计值 柱轴力设计值(压久 材料 混凝土强度等级 箍筋设计强度设计强度导效 型钢强度设计强度计值fa 其他参数 约束影响系数 m j 节点位置影响系数 m j 节点位置影响系数 m 流高间距s(mm) 梁的类型 抗震等级	500 D正) C30 ~ 270 ~ 205 ~ 1 1 100 初筋砼梁 ~ 一级 ~	20	0 200 500
単数 単数 両不进行約件登算前 市不进行約件受算前 市 Asymin = 180. 型钢混凝土节点核心 の symin = 0.8	307 月4日,85 20 平和19,85 20 平载力计算, 20 平和5 20 平和5 20 平和5 20 %	仅按构造戰筋。 箍率	计算书	500	u) <u></u> _

图 5.2.3-1 型钢混凝土节点核心区计算

三、人防构件

1、临空墙

用户可选择双向板、单向板两种类型,并设置其截面尺寸信息、荷载信息、配筋方 式及材料信息后,软件将对**竖直、水平方向配筋进行验算闭关得到相关的弯矩值**。

尺寸信息 ④ 双向板	〇竖直单向板 简支	~		配筋方式 ◎ 对称配筋 材料信息	〇非对称酉防
简支 ~			简支 ~	混凝土强度等级 C40 ~ 钢筋合力点至截面边缘距离∝≤(mm 支座计算放大系数 跨中计算放大系数	纵筋等級 HRB400 ∨) 25 1 1
墙高a(mm)	简支	~ 墙宽b(mm)	4000	计算结果 跨中改平弯拒: Ma = 150.67KN * m/n 跨中垂直弯距: Mb = 107.09KN * m/n 垂直极边弯距 左边: M3 = 0.00KN * m/m 上边: M3 = 0.00KN * m/m 上边: M2 = 0.00KN * m/m 上边: M2 = 0.00KN * m/m), 1 1 ↓ Tot = 17851
墙厚t(mm) 荷载信息	400	77.41.0		22員万回配的1mm*mm/m)に注意: 配約 上載面: 非荷載则 1200.00, 荷載 中載面: 非荷載則 1200.00, 荷載 下載面: 非荷載則 1200.00, 荷載 水平方向配約(mm*mm/m)に注意: 配約 で載面: 非荷載則 1200.00, 荷載	2017日2表示超前」 则 1200.00 则 1200.00 则 1200.00 则 1200.00 则 1200.00
 · 曾性内力 · · 竖向均布荷载; · · ·	○ 塑性内力 殳计值(K2K/m):	杀颈 P 1 2000	规范荷载	石數面:非荷载例 1200.00,荷载 石數面:非荷载例 1200.00,荷载 石數面:非荷载例 1200.00,荷载	1200.00 1200.00 1200.00
墙面均布荷载;	殳计值(KPa):	150	"查询"	计算	生成计算书 退出

图 5.3.1-1 临空墙计算

2、门框墙

用户在设置尺寸信息、荷载信息、材料信息等参数后,软件将得到相关的弯矩值、 剪力值,并对构件的**受拉钢筋面积、抗剪箍筋面积**进行验算。

门框墙配筋计算	×
	荷载信息 qi (KN/m) 1000 qe (KN/m2) 150 规范荷载查询 注意:荷载为设计值 材料信息 混凝土强度等级 C40 → 箍筋等级 IKB400 → 纵筋等级 IKB400 → 混凝土保护层厚度(mm) 20 箍筋间距(mm) 200
尺寸信息 L(mm) 900 h(mm) 600 L1(mm) 866 L2(mm) 800	轻晨聲构件计算 受拉钢筋面积: As = 4095.31mm*mm/m 抗剪箍筋面积: Asv = 304.08mm*mm/m
门洞边长La(mm) 2200	计算 生成计算书 退出

图 5.3.2-1 门框墙计算

四、鉴定加固

1、安全鉴定

①梁鉴定

用户需设置截面尺寸信息、材料信息、内力信息以及钢筋信息后,软件将自动计算 截面的抗剪承载力、截面最大受剪系数、受剪的计算箍筋面积、配箍面积等。

☑ 正截面计算 截面尺寸(nm) 截面宽度b 截面高度b 上翼缘宽度(+H>> 下翼缘宽度(+H>> 下翼缘宽度(+H>= 下翼缘高度(+H>= 上部纵筋至边缘器 上部纵筋至边缘器	 ▶) b) b) b) c) <li< th=""><th>截面计算 250 600 0 0 0 35 35</th><th> 设计轴力N(圧+)(kN) 设计弯矩M(kN,m) 设计垂直剪力Vy(kN) 设计水平剪力Vy(kN) 设计扭矩T(kN,m) 纵向钢筋合力Npo(kN) 抗震等级 内力组合 受圧区钢筋面积(mm2) </th><th>0 300 200 0 0 0 0 九度区 ~ 非抗震组全 ~ 0</th></li<>	截面计算 250 600 0 0 0 35 35	 设计轴力N(圧+)(kN) 设计弯矩M(kN,m) 设计垂直剪力Vy(kN) 设计水平剪力Vy(kN) 设计扭矩T(kN,m) 纵向钢筋合力Npo(kN) 抗震等级 内力组合 受圧区钢筋面积(mm2) 	0 300 200 0 0 0 0 九度区 ~ 非抗震组全 ~ 0
计算跨度1。		6000	实配钢筋信息	
※考虑夜板異: +++*1	素作用		箍筋面枳(mm2)	25
- 1474 混凝十品度等级	C30	~	1種動用距s(mm)	0.0
纵向受拉钢筋	360	~	2 (文) 本 納 肋	0.0
纵向受压钢筋	360	~		1963.5
箍筋	270	~		45
梁类型	框架梁	中 ~		
☑是否考虑受日	钢筋最	小比例		

图 5.4.1-1 梁鉴定

②柱鉴定

需梁鉴定的操作步骤类似,同样需要设置截面尺寸信息、内力信息、材料信息等相 关参数,软件将对**配筋面积、配筋率、配箍面积等**进行自动验算。

柱配筋89规范鉴定					\times
 → 算类别 ✓正載面计算 ● 单偏压 ● 单偏压 ✓ 斜截面计算 	扁压	截面内力 设计轴力X(压+)() 绕X轴设计弯矩(k) 绕X轴设计弯矩(k)	c N) (.m) (.m)	500 300 0	
截面尺寸(mm) 截面宽度b 截面高度h	600 600	另端绕X轴设计弯数 另端绕X轴设计弯数 注: 吕端弯矩与设	ē(kn.m) ē(kn.m) 计弯矩同	0 0 1例受压同	
上翼缘宽度(+ff/>b) 上翼缘高度(+ff/>b) 下翼缘宽度(+ff/=0)	0 0 0 0	丙,并则受压并与 设计垂直剪力Ⅳy() 设计水平剪力Ⅴx()	; (N) (N)	200	
下翼缘高度(+f/=0) 上翼缘偏心(右为正) 上翼缘偏心(+f/>0)	0	设计扭矩T(kN.m) 其它参数 剪跨比入 统统否和()		1	
钢筋合力点至边缘距离 X向平面计算长度 X向平面计算长度	35 4000 4000	拖筋间距s(mm) 箍筋间距s(mm) 矩形指定角筋直径	(mm)	25 100 0	
形心主轴与X夹角(度) 材料 混凝十强度等级	0 C30 V	上侧钢筋 左侧钢筋 抗震等级	1874.7 1182.8 0 九度区	Ξ	-
纵向钢筋设计强度fy(MPa) 箍筋设计强度fyv(MPa)	360 ~ 270 ~	柱类别(正截面) 柱类别(斜截面)	0 框架中 0 框架相	P柱、 注、、	
□ 结构体系为框架结构 内力组合 平抗震组合 ✓ ☑ 考虑音矩增大系数 ☑ 考虑按四类场地较高速调整柱最小配筋率 计算 取消					

图 5.4.1-2 柱鉴定

2、梁加固

软件中对于梁的加固方式包含了增大截面法、置换混凝土法、粘贴纤维法、粘贴型 钢(钢板法)、钢丝网片法,共5种梁加固方法,用户可根据工程选择所需的加固方法 自行验算。

图 5.4.2-1 增大截面法

置换混凝土法	×
计算类列 □ 正載面计算 □ 分載面计算 截面尺寸(mn) 截面高度點 800 上部纵筋至边缘距离 37.6 下部纵筋至边缘距离 37.5 受拉纵筋 1874.7 零斤和筋 1874.7	组合 梁截面位置 ●非地震组合 ●梁中 ○地震组合 ○梁端 ○人防组合 経支型 抗震等级 ● 枢架梁 ● 非抗震 ✓ ● 枢支梁 ○ 非抗震 ✓ ● 枢支梁
(133/10) (101) 箱筋両和(mn2) 0 计算跨度 6000 原箱筋间距 100 材料 原環環道上強度等級 度常規定基金度等級 25 置換定量上強度等級 30 圧筋设计强度 360 拉筋设计强度 360 粒筋设计强度 210 rkE折减系数 1 截面内力 350 设计密矩(MR) 500	
正截面验算-计算结果	 计算 计算书 取消

图 5.4.2-2 置换混凝土法

图 5.4.2-3 粘贴纤维法

MUL (kt, m) (kt, m)	 2)外粘钢板法 计算类别 ② 正截面计算 ◎ 斜 截面宽度b 截面尺寸(mm) 截面高度 b 上部以筋至边缘距离 下部纵筋至边缘距离 野蛇以筋至边缘距离 野蛇以筋至边缘距离 野蛇以筋至边缘距离 野蛇以筋至边缘距离 野蛇以筋至边缘距离 野蛇以筋至边缘距离 野蛇以筋至边缘距离 野砂以筋(m2) 计算跨度 猫筋间距 猫筋间距 猫筋间距 猫筋间距 猫筋间距 猫筋间距 猫筋肉间距 猫筋肉间距 猫筋板晶高度 材料 混凝土强度等级 斜板设计强度 丘筋设计强度 丘筋设计强度 丘筋设计强度 正筋设计强度 环场系数 截面内力 设计雪矩(Lar.m) 设计雪距(Lar.m) 加固前弯距标准值 	 截面计算 300 650 37.5 37.5 37.5 100 650 100 650 360 210 1 550 500 0 	组合 ● 非地震组合 ○ 地震组合 ○ 人防组合 其它参数 抗震等级 5 事抗震 → 300	× 梁載面位置 ◎ 澡中 ○ 建支染 梁英型 ◎ 程支染 ② 程支染 ○ 達染 ○ 注染
	加固前弯矩标准值 MOk(kN.m)	0		
J加另拉依載小載與圓供:0 m2 *		【结果 MPa 改首面积: 153 m	=2	^ ~

图 5.4.2-4 粘贴型钢 (钢板法)、钢丝网片法

图 5.4.2-5 钢丝网片法

3、柱加固

柱加固方式包含了增大截面法、置换混凝土法、粘贴纤维法、粘贴钢板法、外包型 钢法,共5种加固方式,用户可选择所需方式进行自动验算。

増大截面法				×
截面尺寸(mm) 原載面宽度b1 原載面宽度b1 左边加厚宽度b1 右边加厚宽度br 上创加厚高度br 上创加厚高度ba	300 500 0 0 0	组合 ●非地震组合 つ 地震组合 ○ 人防组合	其它参 抗震; 5 非 柱类; 0 普	数 等级 抗震 → 別 通柱 →
 (纵航至边缘距离as 角筋直径(am) 原受拉钢筋 1874.7 原受压钢筋 1874.7 弯矩平面内计算高度 弯距平面外计算高度 	42.5 16 4500 4500		500 500	200
材料 原混凝土强度等级 新增混凝土强度等级 原纵筋设计强度 新增纵筋设计强度 rbs折减系数 原构件材料震损系数	25 30 300 360 1 1	300	₩	
截面内力 设计轴力(kN)(压+) 本截面设计弯矩(kN.m) 另端截面设计弯矩(kN.m)	1000 400) 0	- 300	+	
增助方式为对储额; 新增重问题最大部门的面积力:85 学都重直线的最大部门的面积力;85 全重重线的最大部门和和空压。 增心距增大系数为:1.20 抵抗轴力为:1003.36kH 抵抗=103.36kH 抵抗=103.501.68kH。	1.06mm2; 为:9000.00m 为:825.00mm ;;	m2; 2;		*
		计算结果	生成计算书	取消

图 5.4.3-1 增大截面法

柱置换混凝土法			×		
截面尺寸(mm) 现截面宽度b 现截面高度h 纵筋至边缘距离as 角筋直径	450 750 42.5 16	組合 ● 非地震组合 ○ 地震组合 ○ 人防组合	其它参数 抗震等级 5 非抗震 > 柱类别 0 普通柱 >		
单侧受拉钢筋 1874.7 单侧受压钢筋 1874.7 弯矩平面内计算高度 弯矩平面外计算高度	4500				
材料 原混凝土强度等级 置换混凝土强度等级 原纵筋设计强度 rRE折减系数	25 30 300 1		750		
截面内力 设计轴力(kN) 本截面设计弯矩(kN.m) 另端截面设计弯矩(kN.m)	1000 400 0	450	-		
经计算,不需要置换混凝土即可满足承载力要求! 全截面纵筋骨大器筋面积力;2020.00mm2; 全截面纵筋骨大器筋面积力;20250.00mm2; 空压稳定系载力;0.992; 倒心距骨大载力为;1957.154V; 抵抗轴力为;1957.154V; 抵抗弯矩为;831.79kN.m。					
	मे	算结果 生成计算	书取消		

图 5.4.3-2 置换混凝土法

柱外粘纤维加固			×	
计算类别 12 正截面计算 12	斜截面计算	组合 ● 非地震组合	其它参数 抗震等级	
截面尺寸(mm) 截面宽度b	450	○ 地震组合 ○ 人防组合	3 3 <u>3</u> 柱类别 普通柱 ~	
截面高度h 纵筋至边缘距离 倒角半径 纤维设计拉应变 单层纤维厚度(mm)	450 42.5 25 0.007 0.111	截面内力 设计轴力(kl)(压+) 本截面设计弯矩(kl)	2000 m) 100	
角筋直径(mm) 单侧受拉钢筋 1874.7 单侧受压钢筋 1874.7 弯矩平面内计算高度	4500	另端截面设计弯担(k) 截面高度平行的设计 截面宽度平行的设计	N.m) 0 剪力(kN) 200 剪力(kN) 200	
弯矩平面外计算高度 箍筋面积Asvx(mm2) 箍筋面积Asvy(mm2) 箍筋间距(mm)	4500 40 0 100			
环形箍的中心间距(mm) 剪跨比 轴压比(为0自动计算)	200 1 0		4	
材料 混凝土强度等级 纤维设计强度 纵筋设计强度	30 2300 300	450	7	
 箍筋设计强度 rBE折减系数 震损系数 	360 1 1			
经计算,不需要器件门持约元 字截面纵筋最大段质面控为:10126.00ma2; 字截面纵筋最大段质面控为:10126.00ma2; 容置面纵筋数小程筋面积力;10126.00ma2; 旁计程序和效力:0.992; 得心距增大系数为:1.00; 核抗药自力为:3009.35kH; 胀抗弯拉力力:214.55kH ∞。 升都面验算:计算结果				
	भ	算结果 生成计算	书 取消	

图 5.4.3-3 粘贴纤维法

柱外粘钢板法			×
截面尺寸(mm) 现截面宽度b 现截面高度b 纵筋至边缘距离as 角筋直径(mm) 单侧受拉钢筋 <u>1874.7</u>	450 450 42.5 16	組合 ● 非地震组合 ○ 地震组合 ○ 人防组合	其它参数 抗震等级 5 非抗震 > 柱类别 0 普通柱 >
章矩平面内计算高度 弯矩平面外计算高度	4500 4500		
材料 混凝土强度等级 钢板设计强度 纵筋设计强度 rRI折减系数	30 215 300 1		450
截面内力 设计轴力(kN)(压+) 设计弯矩(kN.m) 另端截面设计弯矩(kN.m)	2000 100 0	450	7
经计算,不需要粘贴纤维加 全截面纵筋最大配筋面积2 全截面纵筋最大配筋面积2 变压稳定系数为:0.992; 偏心距增大系数为:1.205 抵抗袖力为:2932.87km。 抵抗弯矩为:234.63kM.md	「二」 川固即可満足承 り: 12150.00mm2 り: 1215.00mm2	载力要求 ! 21 ;	^
	计算	连用 生成计算	¥书 取消

图 5.4.3-4 粘贴钢板法

		_
柱外包型钢加固	>	K
计算类别	组合其它参数	
☑正截面计算 ☑斜截面计算	●非地震组合 机展等级	
截面尺寸(mm)		
截面宽度6 450	○ 人防组合	
截面高度h 750		
纵筋至边缘距离 42.5		
型钢至边缘距离 25	裁委内力	
角筋直径(mm) 16	協調的が 设计 新力(km)(圧+) 1000	
单侧受拉钢筋 1874.7	本截面设计弯铂(kN.m) 400	
单侧受压钢筋 1874.7	12:2:1:2:1:2:1:2:1:2:1:2:1:2:1:2:1:2:1:	
弯矩平面内计算高度 4500	截面高度平行的设计剪力(kN) 0	
弯矩平面外计算高度 4500	截面宽度平行的设计剪力(kN) 0	
箍筋面积(mm2) 40		
箍筋间距(mm) 100		
缀板间距(mm) 200		
剪跨比 1		
轴压比(为0自动计算) 0		
材料		
混凝土强度等级 25	· · · · · · · · · · · · · · · · · · ·	
型钢设计强度 305		
纵筋设计强度 <u>300</u>		
箍筋设计强度 <u>360</u>		
缀板设计强度 360	450	
rRE折瑊系数 1	1	
震损系数 1		
	^	1
	Y	
	计算结果 生成计算书 取消	

图 5.4.3-5 外包型钢法

4、钢梁加固

用户输入原截面信息、加固截面信息后,设置设计参数,软件将自动进行**截面特性** 验算、加固构件强度验算、加固构件稳定计算、加固构件抗剪承载力计算、宽厚比验算。

, miez	以打彩飘 初件的使用条件 计注意手 动	上方非作用工作社	145		
ΔY	1917비)(비자)가 발생활발회	1/J何戦1F用下的結1	网结构性能设计	J ~	
	● 卸荷加固	○负荷加固	截面延性等级	Ⅲ级	
	梁长度(m)	6	是否为耗能构件	浙	
x	净截面系数	1	□ 按宽厚比等级控制	局部稳定	
	考虑截面塑性发展	考虑 ~	· 截面板件宽厚比等级	吸 S3级	
	实测绕X轴挠度(mm)	0	□执行《高钢规》JG	3399-2015	
	实测绕Y轴挠度(mm)	0	抗震等级	二级	``
	截面上翼缘侧向支撑长度(m (上翼缘有楼板时该值取0)	m) 3000	内力组合	非地震组合	`
原截面输入 加固截面	截面下翼缘侧向支撑长度 (mm)	3000	是否考虑下翼缘畸变组	失稳 不考虑	`
原截面信息	翼緣贴钢板厚度利用系数	0	全国高规性能设计构作	牛类别 耗能构件	``
焊接组合H形截面: H*U*D*B*F*T =	腐蚀损伤强度降低系数	1	强度修正系数n	1	
	加固前设计内力		加固后设计内力(弯矩	下部受拉为正)	
加固做法 1995年1月11日11-200*10	弯矩设计值Mx(kN.m)	0	弯矩设计值Mx(kN.m)	100	
典版冲放时00010里; B1 11-200 10	弯矩设计值My(kN.m)	0	弯矩设计值My(kN.m)) 50	
	剪力设计值V(kN)	0	剪力设计值V(kN)	100	

图 5.4.4-1 钢梁加固计算

5、钢柱加固

用户输入原截面信息、加固截面信息后,设置设计参数,软件将自动进行**截面特性** 验算、负荷加固最大名义应力验算、焊接残余挠度验算、加固构件强度验算、加固构件 平面内稳定验算、加固构件平面外稳定验算以及宽厚比验算。

钢结构柱加固		×
截面信息 12年 12年 12年 11年 11年 11年 11年 11年	设计参数 构件所履装构类别 验算规范 物件工作条件类别 ● 负荷加固 独邦元作《希研规》JG199-2015 世点庁《高研规》JG199-2015 住高度(m) 日本庁《常研規》JG199-2015 住高度(m) 中面内计算长度(m) 6 平面内计算长度(m) 6 考慮載面塑性发展 考虑 海截面系数 1 X向是否有例終 无較修 ~ 强度修正系数n -1	納權架 > 《胡銘构加固设计标准GB51367-2019 > 山-词接承受动力商载作用,或仅承受著 > *]緊遽励利板厚度利用系数: 0 实则结外轴挽度(mn) 0 实则结外轴挽度(mn) 0 建动震相度(mn) 0 组合类別 事地震组合 水農等级 二级 全国高易性能设计构件类別 耗能构出 Yho是否有例移 无则移 > 腐蚀损伤强度降低系数 1
加回顾云:) 减缓焊接钢板补强: B1*T1=200* 钢结构性能设计 截面延性等级: 11155	宽厚比等级控制局部稳定性 宽厚比等级 S3级	加固后往设计内力 轴力设计值N(kN)(受压为+) 0 驾矩设计值Mx(kN.m) 0
	加固前设计内力 最大弯矩设计值Mx(kN.m) 30 最大弯矩设计值My(kN.m) 0 轴力设计值N(kN)(受压为+) 100	 音矩设计值My(kN.m)
柱编号 C_1 读取		计算书 取消

图 5.4.5-1 钢柱加固计算

五、钢结构工具箱

1、钢构件计算

1)受弯构件

用户需输入截面参数、相关设计参数,软件将对**截面特性、材料强度、稳定性以及** 材料宽厚比等进行计算。

图 5.5.1-1 受弯构件计算

②压弯、拉弯构件

用户需输入截面参数、相关设计参数,软件将对**截面特性、材料强度、稳定性以及** 材料宽厚比等进行计算。

压弯、拉弯构件计算		>
	设计参数 选择验算构件 ● 按柱 ○ 按支撑	抗震等级 二級 ~ 组合类别 事地震组合 ~
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	□ 执行《高訊視》JGJ99-2015 □ I J 用柱 验算位置 起始端 → 结构类型 闭框架 → 杆件类别 普通杆件(中心或偏心支系 → 支挥类型 中心支挥 → 净毛面积比 0.85 %asht/世长度(ma) 3000	研結体防火验算 500 设计耐火级限时间内锅材最高温度 500 是否耐火钢 否 研结构性能设计 截面延性等级 11158
上 北線 振波振算度 (mn) B 20 1 正 北 正 成 正 成 正 成 正 成 正 成 正 成 正 成 正 成 正 成 定 成 の の ス て 成 の	绕r轴计算长度(nm) 約00 約日 約日 第日	
^σ max = 70.71B/mm2 ≪ f = 205.00B/A 入x = 12.22 ≪ 80.00.満足要求。入y σ _{wx} = 21.24B/am2 ≪ f = 205.00B/Am 難流党厚比 9.50 ≪ 13.00.満足要求。	maC 满足要求。♂ sin = 62 068/mm2 < f = 205.001 = 33.86 < 80.00 满足要求。 ∠,滿足要求。 < y = 17.38%/ma2 < f = 205.008/n 艱杨嘉厚比 28.00 < 78.01.滿足要求。	✓ 1/ma2,満足要求。 ■2,満足要求。 ●2,満足要求。 ● ● ● ● ● ● ● ● ● ● ● ● ●

图 5.5.1-2 压弯、拉弯构件

2、围护构件计算

围护构件计算包含了**隅撑、简支屋面檩条、简支墙面檩条、屋面连续檩条、墙面连**续檩条、桁架檩条,共计6种构件验算。

隅撑计算		×		
	檩条参数 截面: C200X70X20X2 钢材等级 Q235	.0 选择 ~		
	螺栓参数 螺栓类别 C级~	4. 6, 4. 8 🗸		
<mark>675 675</mark> 隅撑参数 隅撑节点形式	螺栓自径(mm) b= 30 h= a= 765.574	70		
 ● 类型A ○ 类型B ○ 类型C # TA 		据		
[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	上翼缘宽度	300		
钢材等级 Q235 ~ 隅撑布置方式	上異缘厚度 下翼缘宽度(mm)	300		
 ● 双侧布置 ● 単侧布置 类型C:加劲板孔位置(mm) 	下翼缘厚度(mm) 腹板厚度	12		
BX= 60 BA= 60	钢材等级	235 🗸		
隅理计算: 応力 : 23.425 W/mm2 < 155.764 W/mm2 隔律验算満足要求。螺栓计算: 螺栓连接承载力设计值计算不满足要求!				
计算	结果 生成计算书	退出		

图 5.5.2-1 隅撑计算

檩条截面参数		计算参数	
C200X70X20X2.0	选择	屋面自重(不含檩条自重)(kN/m	n2) 0.3
		屋面活载(kN/m2)	0.5
	0005	雪荷载(kN/m2)	0.3
的何望亏	QZ35 V	积灰荷载(kN/m2)	0
檩条跨度(mm)	6000	施丁荷载(作用在跨中)(kN)	1
檩条间距(mm)	1500	操度限值(1/X)	200
悬挑长度(mm)	0	轴力设计值(受压为+)(\N)	0
净毛带面比	0.85	- 风荷载	<u> </u>
		基本风压值(kN/m2)	0.5
屋面坡度(°)	5. /11	风压调整系数	1.5
拉条设置	设一道 🗸	风压高度变化系数	1
拉条作用 约束橋	鰊条上翼缘 ∨	屋面形式 双切	また しょう
验算规范 冷弯辣	ې⊈规范GB5OC ∨	建筑形式 封約	冠 ~
☑ 执行《建筑结构	可靠性设计统一	分区 角部	β ~
标准》(GB50068 □ □ 評資下環境資産	-2018)	风吸力荷载系数(负值)	-1.36
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		风压力荷载系数(正值)	0.38

图 5.5.2-2 简支屋面檩条计算

简支墙梁计算			×
- 墙梁截面参数		计算参数	
C200X70X20X2.0	选择	墙板自重(kM/m)	0.3
檩条相关参数		水平挠度限值(1/X)	200
钢材型号	Q235 V	竖向挠度限值(1/X)	150
 	6000	风荷载	
	1500	基本风压值(kN/m2)	0.5
		风压调整系数	1.5
────────────────────────────────────		风压高度变化系数	1
墙梁布置方式 	口朝下 ~	建筑形式	封闭式 🗸 🗸 🗸
净毛截面比	0.85	分区	中间区 ~
拉条设置	设一道 🗸	风吸力荷载系数(负值)	-1.11
拉条作用 约束相	廪条外翼缘 ~	风压力荷载系数(正值)	1.01
验算规范 冷弯药	튲壁规范GB500 ∨	☑计算外翼缘稳定	
☑执行《建筑结构 ☑标准》(GB50068	可靠性设计统— —2018)	☑计算内翼缘稳定	
简支墙梁编号: J	ZQL_1	读取 生质	成计算书 退出

图 5.5.2-3 简支墙面檩条计算
连续跨形式:	对称多跨	~	
E装镶示时数:	9//5/2011	~	
屋面材料:	压型钢板	~	几何信息 檀条间距(m): 1.5
屋面倾角(°):	5. 711		
净截面系数:	1		搭接长度A(m): 0.3 搭接长度B(m): 0.3
每跨拉条设置数	设1道	\sim	搭接长度C(m): 0.3
拉条作用: 约]	束檩条上翼缘	\sim	截面信息
7.7+44	陈冶白讥罕		截面选择: Z形複条(料巻边) ✓ 目定× 新増自定×
-1-X340	吃信忌收血		2019年1月 中间跨載面: XZ140X50X20X2.0 ~

图 5.5.2-4 屋面连续檩条计算

増面连续 機会 计算 ×	(
连续墙梁定义 作用荷载与分析参数	
总信息	
连续檩条跨数: 5跨及以上 · · · · · · · · · · · · · · · · · · ·	
(納材型号: Q235 / 2010	
リル可信息 増面材料: 圧型钢板 ~ 権条间距(m): 1.5	
墙板设置: 单侧挂板 ✓ 边跨长度L1(m): 6 中跨长度L2(m): 6	
净截面系数: 1 搭接长度A(m): 0.3 搭接长度B(m): 0.3	
每跨拉条设置数:设1道 🗸 搭接长度C(m): 0.3	
拉条作用: 约束墙梁外翼缘 🗸 截面信息	
截面选择: 工形檩条(斜卷边) V 自定义	
边跨截面: XZ140X50X20X2.0 ~ 新增自定义截 直在下拉列表	
中间跨截面: XZ140X50X20X2.0 V	
_ 连续墙梁编号: □QL_1 读取 计 算 退出	

图 5.5.2-5 墙面连续檩条计算

桁架式檩条设计									×
		面材料: 面倾角(°):	压型钢板 5.711]屋面板能]构造保证	润止檩条 - 风吸力下	₹上翼缘 5翼缘受	受压侧向失 压稳定性	稳
桁架檩条编号: HJLT_1 净截面系数: 1		♣间距(m): ♣跨度(m): ⊼弦侧向支撑:	1.5 6 : 设道]考虑冷弯]执行《建 (GB50068	豌应 筑结构可 3-2018)]靠性设	计统一标准	È»
杆件基本信息 上弦节间长度(mm): 600		干中心距离(mr	m): 600		(力设计值) 自定义	(kN): 截面	新増目	0 自定义截面 动夷最后	
上弦截面形式: Z形檩条(斜卷边 上弦截面名称: XZ140X50X20X2.) < 腹杆截面 0 < 腹杆截面	面形式: Z 面名称: X	形檩条(斜卷) (Z140X50X20X2	b) ~ 2.0 ~	下弦截 下弦截	面形式: 面名称:	Z形模纲 XZ140X	系(斜卷边) 50X20X2.0	~
上弦钢号: Q235 d (mm): 0	✓ 腹杆钢号 d (mm):	≓:	Q235 0	~	下弦钢 [。] d (mm):	द ः	1	Q235 D	~
屋面荷载 屋面自重(不含檩条自重)(kN/m2): 屋面活载(kN/m2): 积灰荷载(kN/m2): 雪荷载(kN/m2): 施工荷载(作用在跨中)(kN):	0.3 0.5 0 0.3 1	风荷载 屋面形式: 建筑形式: 基本风压仍 风压高度到 风吸力荷载	双坡 封闭: 查(dvl/m2): 变化系数: 或系数(负值): 或系数(正值):	至面 式 0.5 1 -1.36 0.38		分区: 风压调	角部 整系数:	1.5	~
						나	算	取消	

图 5.5.2-6 桁架式檩条计算

3、组合梁计算

用户需设置基本设计参数信息以及截面信息后,软件将自动进行**组合梁承载模式计** 算、强度验算、局部稳定验算、变形验算。

简支组合梁设计	×
基本参数设计 截面验算	
基本参数 连接件 梁跨度(mm) 5000 钢材钢号 9235 、 连接件类型 拴钉 、 连接件列数 1 、 板混凝土型号 C30 、	
正接件横向间距(mm) 130 B1 B0 B2 □用户自行指定连接件抗剪承载力	
□ 一 一 次凝土板 □ 世板为压型钢板滚混凝土组合板 □ 田白倉定义 正型钢板垂直于钢梁布置 □ □ 计算宽度 板厚Tp(mm) 150 B1 (mm) 500	
BS2 板托高度Ts(nm) 0 BO(nm) 59 板托上宽度Bs1(nm) 0 B2(nm) 500	
钢梁截面选择 板托底宽度Bs2(mm) 0 混凝土翼板设置	
组合梁名称 ZHL1 读取原有数据 确定 确定	退出

图 5.5.3-1 组合梁计算

4、吊车梁计算

目前支持对工字型吊车梁验算,软件在设置吊车数据、吊车梁数据、其他荷载作用 及疲劳计算参数后,将自动计算吊车梁内力以及加劲肋截面尺寸,并对吊车梁强度、挠 度、稳定性以及局部稳定性进行验算。

简支用车梁计算	×
吊车数据 吊车梁数据 其他荷载作用及疲劳计算	
设计参数 吊车梁村料 (345 → 和与法科类型 予載面系数 ① 65 集中荷载的限定分布长度1よ计算公式 《(钢标》6.1.4-2 → 執)遺僧性拒It(en4) 2000 注:参考《钢结构设计标准》条文说明 [四荷载系教技《建筑结构可奉性设计统一标准》即值	6. 1. 4
日本资料	
序号 吊车跨度 起重量 工作级别 吊钩类型 单侧轮 增加 1 10500mm 5.00t A1"A3轻级 硬约 2 ●	۹ ۶
189 <	×
□将吊车资料列表中数据存入自定义吊车库	
选择并车台数和序号 吊车台数 第一台吊车序号 1 ~ 第二台吊车序号 7 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1	
吊车梁名称: 11 读取 计算	退出

图 5.5.4-1 吊车梁计算

5、支撑计算

目前支持对**柱间支撑及屋面支撑**进行验算,用户在设置相关参数后,软件将自动计 算并出具计算书。

屋面支撑计算		×
构件名称: ZC1 截面信息	读取	
钢材钢号	Q235 ~	
_>1¥ 截面尺寸	守辺用th1 ~ L20x3 ~	
支撑点间距B(m) 柱距L(m)	6	
容许长细比	400	
→ ■ ■ □ 示数	性设计统一标准》	GB50068-2018
荷载信息		
自动导算剪力参数		
连接材料信息	1814.7	
「螺栓 且径(mm) 10 螺栓数量 2	螺栓子 抗剪强	し目径(mm) 11.5 程度(N/mm2) 140
		计算 取消

图 5.5.5-1 屋面支撑计算

基本信息		7	6置信息			
支撑类型	交叉支撑	\sim	B(m)	6.000	1	
钢材型号	Q235	\sim	H(m)	6.000	<u> </u>	
构件名称	201		H1 (m)	4.500	· ·	
□ 下部交叉支	撑为双片支	撑	节间数n	4	L L	
计算参数		7	2片支撑布置信	息	, i	/ _
□ 按单拉杆设	:it		支撑间距	300		∕∖ 1
净截面系数	0.85		绷条最大间距	1170		
控制长细比	200		缀条截面	L20x3 ~		` <u>`</u>
柱顶最大位移	1/150	\sim	绷条形式	横杆 ~		`\
梁柱信息		3	多层支撑参数一			B
左柱截面类型	国标热轧	ί~	BxH1 : 6mx6m			
左柱截面型号	HW100X100	\sim	d1 (mm)	0		
右柱截面类型	国标热轧	f ~	d2(mm)	0	科杜信息	
右柱截面型号	HW100X100) ~	d3(mm)	0	御田尖型	図客
梁截面类型	热轧普通] ~	🗌 设置水平杆		截面型号	D6 ~
梁截面型号	I10	\sim	支撑组数	1	版背间距(mm)	10
			各组支撑高度	Ł	钢管外径(mm)	102
水平什信息 載 泰米 刑	(B):0		1		钠管壁厚(mm)	10
御闻天堂	DC		注:高度比之间	间以"/"分隔	上部斜杆信息	
戦闘空与 時後问明()	10				截面类型	圆钢 🗸 🗸
102 H 10136 (1000)	10				截面型号	D6 \sim
荷载信息					肢背间距(mm)	10
□执行《建筑	与市政公称	抗震通用规范	古》		钢管外径(mm)	102
节点号	风荷载	吊车刹车力	地震力	输入	钢管壁厚(mm)	10
1	5	0	0	修改		
					读 取	计算

图 5.5.5-2 柱间支撑计算

6、抗风柱计算

用户需设置好截面信息,并设置设计参数、墙板荷载、风荷载等参数信息后,软件 将对抗风柱的**强度、挠度以及稳定性**进行验算并出具计算书。

构件名称: KFZ1 i i i i i i i i i i i i i i i i i i i	读 取 设计参数						
	抗风柱高度	ξ(m) 6	6 钢材	闲号	Q235 🗸		\rightarrow
	抗风柱间跳	ī(m) 4	 A	湍连接类型	铰接 ~		
	柱顶恒载()	kn) (D 柱下:	嵩连接类型	较接 ~		\rightarrow
вн_	柱顶活载()	(M)) 净截	面系数	1		
	平面内计算	【长度系数 1	· 容许:	挽度 L/v	250		$ \longrightarrow $
∟Di	平面外计算	【长度(m) 🛛	5 验算;	规范 《钢结构	设计标准 ~		
	跨中支座数	t C) 截面;	版件宽厚比等级	S3级 ~		
H300*250*6*12	跨中支座标	高(m)(xx/xx,	/жж)			کر ا	
修改	☑执行《氰	网结构设计标》	隹》GB50017-2017				
修 改 墙板荷载	☑执行《ŧ	网结构设计标》 风荷载	僅》GB50017-2017		圆管柱端部	¥弯矩	
 修改 遺板荷载 ☑ 遺板自承重 	☑执行《钅	网结构设计标》 风荷载 调整/	隹》GB50017-2017 	0.3	圆管柱端 Ai带X轴音	祁弯矩 新章矩	10
 修改 造板荷载 □ 墙板自承重 墙板自重(kX/m2) 	☑执行《第	网结构设计标》 风荷载 调整 风压	隹》GB50017-2017 5 后基本风压(kN/m2) 力体型系数μs1	0.3	圆管柱端 动端X轴音 动端Y轴音	部弯矩 第巨(kN・m) 第巨(kN・m)	10
 修改 遺板商载 □ 遺板自承重 遺板自重(\&X/m2) 遺板中心与柱形心距离(mm) 	 ☑执行《第 0.2 500 	网结构设计标》 风荷载 调整/ 风压 、 风広 、	隹》GB50017-2017 后基本风压(kW/m2) 力体型系数μ≤1 力体型系数μ≤2	0.3	圆管柱端 A述#X轴音 A述#Y轴音 B端X轴音	郡弯矩 新巨(kN・m) 新巨(kN・m) 新巨(kN・m)	10 10 10
 修改 遺板荷载 づ遺板自承重 遺板自重(kx/m2) 遺板中心与柱形心距离(mm) 遠深数 	 ☑ 执行《第 0.2 500 4 	网结构设计标》 - 风荷载 - 调整/ 风压 - 风吸 - 风吸 - 风吸	隹》GB50017-2017 	0.3 1 -1 1.38	圆管柱端 約端X袖晉 約端X袖晉 D端X袖晉 D端X袖晉	都弯矩 線矩(kN・m) 線矩(kN・m) 線矩(kN・m) 線矩(kN・m)	10 10 10 10

图 5.5.6-1 抗风柱计算

六、其他设计工具

1、地震分组查询

软件已内置地震库,便于用户选择所在地区查询相关地震分组数据。

省份 北京市 城市 全部 省份 城市 地区 设防烈度 加速度 地震分组 北京市 北京市 东城区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 町城区 8度 0.20g 第二组 北京市 北京市 市町区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 万法区 8度 0.20g 第二组 北京市 北京市 市山区 8度 0.20g 第二组 北京市 北京市 市山区 8度 0.20g 第二组 北京市 北京市 市山区 8度 0.20g 第二组 北京市 北京市 西山区 8度 0.20g 第二组 北京市 北京市 通知区 8度 0.20g 第二组
省份 北京市 → 城市 全部 → 街份 城市 地区 设防烈度 加速度 地震分组 北京市 北京市 东城区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 本山区 8度 0.20g 第二组 北京市 北京市 本白区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 高山区 8度 0.20g 第二组 北京市 北京市 高山区 8度 0.20g 第二组 北京市 北京市 高山区 8度 0.20g 第二组 北京市 北京市 周州区 8度 0.20g 第二组 北京市 北京市 周州区 8度 0.20g 第二组
省份 城市 地区 设防烈度 加速度 地震分组 北京市 北京市 东城区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 朝阳区 8度 0.20g 第二组 北京市 北京市 朝阳区 8度 0.20g 第二组 北京市 北京市 有景山区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 百人 0.20g 第二组 北京市 北京市 百人 0.20g 第二组 北京市 北京市 日 8度 0.20g 第二组 北京市 北京市 日 8度 0.20g 第二组 北京市 北京市 周州区 8度 0.20g 第二组 北京市 北京市 周州区 8度 0.20g 第二组
北京市 北京市 东城区 8度 0.20g 第二组 北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 朝阳区 8度 0.20g 第二组 北京市 北京市 朝田区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第三组 北京市 北京市 石景近区 8度 0.20g 第三组 北京市 北京市 石景近区 8度 0.20g 第三组 北京市 北京市 门头沟区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 廣山区 8度 0.20g 第二组 北京市 北京市 通州区 8度 0.20g 第二组
北京市 北京市 西城区 8度 0.20g 第二组 北京市 北京市 朝阳区 0度 0.20g 第二组 北京市 北京市 韦台区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 冯应区 8度 0.20g 第二组 北京市 北京市 冯应区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 岡川区 8度 0.20g 第三组
北京市 北京市 朝阳区 8度 0.20g 第二组 北京市 北京市 丰台区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 石房山区 8度 0.20g 第二组 北京市 北京市 海淀区 8度 0.20g 第二组 北京市 北京市 门头沟区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 通州区 8度 0.20g 第二组
北京市 北京市 丰台区 8度 0.20g 第二组 北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 石景近区 8度 0.20g 第二组 北京市 北京市 万法区 8度 0.20g 第二组 北京市 北京市 门头沟区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 廣川区 8度 0.20g 第二组
北京市 北京市 石景山区 8度 0.20g 第二组 北京市 北京市 海淀区 8度 0.20g 第二组 北京市 北京市 门头沟区 8度 0.20g 第二组 北京市 北京市 月以沟区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 通州区 8度 0.20g 第二组
北京市 北京市 海淀区 8度 0.20g 第二组 北京市 北京市 门头沟区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 廣川区 8度 0.20g 第二组
北京市 北京市 门头沟区 8度 0.20g 第二组 北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 通州区 8度 0.20g 第二组
北京市 北京市 房山区 8度 0.20g 第二组 北京市 北京市 通州区 8度 0.20g 第二组
北京市 北京市 通州区 8度 0.20g 第二组
化尿中 化尿中 顺入区 0克 0.208 另二组
北京市 北京市 昌平区 8度 0.20g 第二组
北京市 北京市 大兴区 8度 0.20g 第二组
北京市 北京市 怀柔区 8度 0.20g 第二组
北京市 北京市 平谷区 8度 0.20g 第二组
北京市 北京市 密云区 8度 0.20g 第二组
北京市 北京市 延庆区 8度 0.20g 第二组
取消

图 5.6.1-1 地震分组查询

2、连续梁计算

软件支持对混凝土连续梁进行计算,用户可以根据需要自行设置荷载信息并计算, 软件将自动计算配筋面积。

E续梁计算							
444			g: 4.88 kN /m				
1			3000				
			荷载信息				
连续	梁编号: B1	读取	荷载类别:	均布荷载	~ 荷载类别插图	8	_
结构信息			q1 10 kN/	m D10 m D20			
跨号	跨度 截面尺寸	追加				D2	
1	3 300 × 500	修改	☑自动计算	〔 梁自重	□ 工况1:1	亘载 **]
		插入	恒载系数	1.3	□ 工况2-3	re 舌载	
		刪除	活载系数	1.5		2	
左端 固	一 右端	司端 ~	添加荷華	成 修改荷载			
跨度: 300	00 mm 宽: 300	mm 高: 500 mm	删除荷载	t			
构件编号	KL1	·思紹士 [220]	简化计算结果				
合力占讷	SEas(mm) 35		截面	上部钢筋	下部钢筋	箍筋	
	55 1 1	纵前级别 HRB400 ~	0支座: 1跨中:	300.00mm2 300.00mm2	0.00mm2 300.00mm2	18.87mm2	
時中芎畑		1 	1支座:	300.00mm2	0.00mm2		
交座驾矩: ☑ 指定纵	调至杀数 1 (筋强度N/mm2 360	说明: 弯矩调整系数只 影响配筋		计	算 计算	算书 退出	1

图 5.6.2-1 连续梁计算

3、锚筋锚板计算

目前支持 3 种计算类型,分别为由锚板和对称配制的直锚筋所组成的受力预埋件、 吊环、受剪预埋件。其中第一种计算时,用户需设置相关的荷载信息、布置信息、材料 信息等参数后,软件将自动计算锚筋的总截面面积以及单根锚筋截面面积。

锚筋锚板计算	×
计算类型 由锚板和对称配置的直锚	筋所组成的受力预埋件 🗸
荷载信息 執力取(AB) (社力为五) 均力ソ(AB) 可力ソ(AB) 電矩(AB + m) 10 10 10 10 10 10 10 10 10 10	
対理理と 10 材料信息 道筋筋級別 NEB400 ~ 直锚筋直径(am) 8 混凝土等級 C15 ~ 锚板厚度(am) 14 锚板原度(am) 160 锚板高度(am) 225	参数信息 结构重要性系数 1 描板弯曲变形 1 折减系数 1 层数是响系数 1
钮筋忌數面面积 As = 659.0 mm2 单根锚筋截面面积 As0 = 164.7 mm	2
	计算 取消

图 5.6.3-1 锚筋锚板计算

4、牛腿计算

用户需设置材料参数、截面参数以及荷载参数信息,软件将对**局部压力、受拉钢筋、 箍筋进行自动验算**。

牛腿设计		>	×
L 17 @	截面参数(mm)		
	竖向力作用点至下柱边缘 水平距离a	100	
Fvk (Fv)	牛腿宽度b	400	
Fhk (Fh)	牛腿挑出长度c	500	
││ └─────┐ ╤┫┥ │	牛腿高度h	750	
	牛腿外边缘高度h1	250	
	保护层厚度as	25	
La L	局部压应力受荷面积Al(mm2)	50000	
	裂缝控制系数B	0.8	
下柱宽 c	荷裁关款化的		
林料参数	竖向荷载标准值Fvk	800	
混凝土强度等级 C15 ∨	竖向荷载设计值Fv	850	
纵筋强度等级 HRB400 ∨	水平荷载标准值Fhk	0	
箍筋强度等级 HRB400 ~	水平荷载设计值Fh	0	
计算得 h0 = 725 mm 由 《混砚》9.3.10 Fvkmax = 463.253 kN Fvkmax ≤ Fvk, 不満定要求。 周部正立方 σ = 16.00 M/mn2 σ > 0.75fc, 不需P専求。 <	→ → → → → →	取消	

图 5.6.4-1 牛腿计算

附录 支持及参考规范

《施工脚手架通用规范》GB55023-2022

《建筑结构可靠性设计统一标准》GB50068-2018

《建筑施工脚手架安全技术统一标准》GB51210-2016

《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T231-2021

《承插型套扣式钢管脚手架技术规程》T/CECS 1152-2022

《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011

《建筑施工承插型轮扣式模板支架安全技术规程》T/CCIAT0003-2019

《建筑施工模板安全技术规范》JGJ162-2008

《混凝土结构工程施工规范》GB50666-2011

《混凝土结构设计规范》GB50010-2010(2024版)

《建筑结构荷载规范》GB50009-2012

《钢结构设计标准》GB50017-2017

《建筑与市政工程施工现场临时用电安全技术标准》JGJ/T46-2024

《钢结构通用规范》GB55006-2021

《混凝土结构通用规范》GB55008-2021

《建筑与市政地基基础通用规范》GB55003-2021

《工程结构通用规范》GB55001-2021

《建筑地基基础设计规范》GB50007-2011

《建筑施工扣件式钢管脚手架安全技术标准》T/CECS 699-2020

《塔式起重机混凝土基础工程技术标准》JGJ/T187-2019

《建筑施工升降机安装、使用、拆卸安全技术规程》JGJ215-2010

《施工现场消防安全技术规范》GB50720-2011

《建筑工程施工现场供电安全规范》GB50194-2014

《低压配电设计规范》GB50054-2011

《通用用电设备配电设计规范》GB50055-2011

《供配电系统设计规范》GB50052-2009

《建筑施工安全检查标准》JGJ59-2011

《SCD200/200 施工升降机使用说明书》

《建筑施工手册》第五版

《建筑施工计算手册》(第四版)江正荣编著