"大片红"怎么办?

周胤呈

在进行结构设计计算时,您是否遇到过配筋简图出现大面积红色警示的情况?例如这样:

或者这样:

或者这样:

很多用户碰到这类问题有些手足无措,不知道如何着手处理。本篇针对此类情况,整理了一些常见原因,并在文末提供解决类似问题的解决思路,仅供您参考(文末有彩蛋,敬 请阅读至最后ⓒ)。

原因1: 地震调整系数过大

剪重比调整

进行地震力计算时,各楼层剪重比需要满足规范要求。当振型质量参与系数不满足规范

要求,可能导致地震力计算值过小,剪重比调整系数就会较大,引发计算结果大面积超限。 如下图所示框架结构,配筋大面积显红:

从 wzq.out 文本发现质量参与系数均未达到规范要求:

X向平动振型参与质量系数总计: Y向平动振型参与质量系数总计: 64. 32% 75. 53%

再查看超限的某根柱构件信息, 剪重比调整系数高达 16, 明显是不合理的:

N-C=54 (I=2000045, J=1000374)(1)B*H(mm)=600*600 Cover= 20(mm) Cx=1.25 Cy=1.25 Lcx=4.50(m) Lcy=4.50(m) Nfc=3 Nfc_gz=3 Rcc=30.0 Fy=300 Fyv=270 砼柱 C30 矩形 livec=1.000 jzx=16.196, jzy=16.820 brc=1.250 ηmu=1.300 ηvu=1.560 ηmd=1.300 ηvd=1.560 X: (27)My= 790.8 Vx= -338.7 λc=4.187 Y: (9)Mx= 52.6 Vy= -22.9 λc=4.112

通过增加振型数或者特征值分析类型采用 Ritz 向量法计算,使模型质量参与系数达到 90% 以上,计算结果就正常了:

X向平动振型参与质量系数总计:	92.48%
Y向平动振型参与质量系数总计:	92.57%

底部剪力法调整

对于"广东高规",地震力除需满足剪重比要求之外,还需要满足底部剪力法计算的总 剪力的 85%:

4.3.13 当计算的底部剪力小于规定的最小值时,可直接放大地震剪力以满足最小地震剪力 要求,放大后的底部总剪力尚不宜小于按底部剪力法算得的总剪力的85%,相应地放大相关 地震作用效应。

当底部剪力法计算的地震力远大于振型分解反应谱法地震力结果时,会出现地震力调整系数过大,大面积超限的情况。这也是广东用户比较常见的问题"满足最小剪重比要求,为什么还是有地震力调整系数"。下图案例,采用广东高规进行设计,计算完成之后,剪力墙大面积超限:

程序对于底部剪力法计算所采用的基本周期为质量参与系数最大振型所对应的周期:

考虑到高阶振型的急速衰减性,一般情况都是低阶振型质量参与系数较大。但对于某些 多塔、连体、转换等特殊结构也会出现高阶振型质量参与系数大于低阶振型的情况。上述剪 力墙大面积超限案例为全转换结构,质量参与系数最大为第 24 振型,底部剪力法计算时, 程序取第 24 振型对应的周期作为基本周期,该周期位于反应谱的加速度段,计算时 α1=αmax, 计算所得的地震力较振型分解反应谱法大很多,起控制作用。

对于底部剪力法计算周期的选择,部分用户认为应采用最大的周期作为基本周期,此时 可通过"高级参数-基本周期对应的振型号"对基本周期进行人为选择,程序默认为0,即最 大的质量参与系数对应的振型号来选取周期,将其修改为1,则采用第一振型对应的周期作 为基本周期。

控制参数	×
通用 梁 柱 墙 整体指标 其他 ;	计算相关│前处理│前处理(续)│施工图│鉴定加固│
空心板 ✓ 考虑梁变形 ✓ 考虑坚向构件刚度 网格划分尺寸(m) 0.5 计算模型 ● 刚度折减 ○ 梁+弹性板	计算选项 振型参与质量计算选项 1:考虑2:不考虑3:自动 □ 造的轴向荷载采用导荷结果
 □ 考虑肋梁剪力折减 ☑ 考虑肋梁弯矩调幅 	减隔震反应谱迭代选项 附加阻尼比迭代容差 0.010
广东高规 X方向基本周期对应的振型号 0 Y方向基本周期对应的振型号 0	应TG在前振空收 质重参与系数廓 ♥ ✓ 门刚计算单品时,考虑MODEL_2DIMENSION标记 ✓ 整体计算出错,不继续进行后续设计 □ 输出单元应变能

手动将上述案例高级参数基本周期对应振型号改为 1 之后,地震剪力调整系数则按剪 重比调整,剪力墙不再超限。

层号	塔号	X向调整系数	Y向调整系数	调整后X向剪力	调整后Y向剪力
1	1	1.150	1.058	7152.03	7152.03
2	1	1.150	1.058	6925.78	6950.04
3	1	1.150	1.058	6637.54	6655.19
4	1	1.150	1.058	6347.52	6313.10
5	1	1.150	1.058	6088.29	5969.87
6	1	1.150	1.058	5856.27	5638.90
7	1	1.150	1.058	5631.58	5318.77
8	1	1.150	1.058	5436.66	5054.54
9	1	1, 150	1.058	5247.43	4825.43

原因 2: 0.2 V₀导致

0.2 V₀相关参数设置不当也会引起大面积超限,如下项目地下室部分配筋异常大:

经检查,用户参数当中对地下室也进行了 $0.2 V_0$ 的调整,查看某根超限梁的构件信息, $0.2 V_0$ 调整系数异常大:

26	N-B=21 (I Lb=5.78(m 石溜 C25	=100001) Cover= 标加初	5, J=100(= 25(mm) 回転該 好	0188) (1)E Nfb=3 Nf	3*H(mm) fb_gz=3	=400*800 按T Rcb=35.0 Fy=	形梁设 360 Ⅰ	- t计 (2033*) ?yv=360	250)	
97-110- 97-110- 97-12- 97-12- 97-12- 97-12- 97-110- 97-100- 97	livec=1.0 η v=1.100	他未未 00 sti:	е=1.960	stif_w=1	1.960	stif_s=1.960	02v2	x=71.429,	02vy=53	2.164 t
3	M (1.N)	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-	-9-
4	-M(KNM)	-5227	(28)	-2906	-1804	(32) (0)	(31)	(31)	(31)
-	Top Ast	16568	13825	10350	7130	2546	0	2572	7121	10291

对于地下室,虽然规范并未明确是否进行 0.2 V₀的调整,但根据朱炳寅的《高层建筑结构技术应用与分析》,地下室实际上可以不进行 0.2 V₀调整:

将模型参数中 $0.2 V_0$ 调整的起始层号由原先的 1 修改为 2, 即地下室不参与调整, 重新计算, 配筋回归正常:

原因 3: 考虑横向风振导致的超限

当考虑横向风振对结构的影响时,程序按照《建筑结构荷载规范》附录 H 相关条文进行计算。但需注意,规范算法是有适用条件的,见《建筑结构荷载规范》H.2.1:

H.2.1 矩形截面高层建筑当满足下列条件时,可按本节的规定

确定其横风向风振等效风荷载:

1 建筑的平面形状和质量在整个高度范围内基本相同;

2 高宽比 H/√BD在 4~8之间, 深宽比 D/B 在 0.5~2之

间,其中 B 为结构的迎风面宽度, D 为结构平面的进深(顺风向尺寸);

超过这些条件的模型,继续按照规范进行计算,理论上是算不准确的,此时宜进行风洞 试验。

下面来看一个案例,用户模型 H=78m, B=14.2m, D=52.7m:

5 居谷	伝相居	层面(m	层底标高(m)			2 f		
	2	2100	40.0		- 11			
	2	3100	43.9		- 11			
	2	3100	4/			2 f		
	2	3100	50.1					
	2	3100	53.2		_			
	2	3100	56.3					
	2	3100	59.4				* 📿 (- 241
	2	3100	62.5			2 f		
	2	3100	65.6					
	2	3100	68.7					
	2	3100	71.8					
	3	3100	74.9					
					~	È 4		
丟数 1	~	与基础相	连构件的最大	高高(m) -5,800				

高宽比 H/√BD=78/√14.2×52.7=2.85; 深宽比 D/B=14.2/52.7=0.27, 两项均低于规范限值, 最终程序计算结果异常:

程序按照《建筑结构荷载规范》H.2.2 进行横风向风振等效风荷载标准值计算。模型路径下 yjkwindforce 文件,可以看到,模型顶层该值高达 82kN/m2,是正常情况的一百多倍,明显 不合理。如下图:

Y	向风(横向为X向):	
-	B(m)	52.7
	D (m)	14.2
	角沿比例	0
	Т	0.2
	γCM	-0.320298
	CL'	-0.736685
	γCM	-0. 320298
	vH	34. 4274
	TL1*	0.0133321
	fL1*	7.65379
	ζa1	3.33581e-005
	KL	1.27273
	SFL	14.6366
	RL.	60 2305
:_ [w1k(kN/m2)	-82.1839

当不考虑横向风之后,计算结果正常:

原因 4: 自动放大配筋至非薄弱

模型中出现受剪承载力不足形成的薄弱层时,通常可以通过勾选计算参数的"自动根据 层间受剪承载力比值调整配筋至非薄弱"来解决问题:

✓ 自动根据层间受剪承载力比值调 整配筋至非薄弱	0.8

但如果受剪承载力比值相差较大,这种方法就不再合适了。如下案例,勾选参数之后, 薄弱层的部分竖向构件超筋:

1,4± ×≠5_ #⊒⊒#	# <u>"p</u> #	u_ *	_ ™_*****
* <u>€=</u> * <u>₹</u> # # *! •			
다는 연 며 위 또 제 북 <mark>하</mark>			
10000000000000000000000000000000000000			
₩ ŢŢŢĸŢŢ ₩			≇ ∦ "फ_¥ = = = = # #
s : *** ***			ġġġ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
یں سیان بر بر بر سیان بر بر سیان	- R - #	w	
tienenenenenenenenenenenenenenenenenenen			⁴ ∰a ≂ ⊼ x12 <u>1</u> = %. 3 × s × s s
k *	* ****		

不勾选自动调整参数计算,总信息中可以看到初始受剪承载力比值,x 方向为 0.49, y 方向为 0.52,比值过小。此类情况,需要重新考虑结构布置,而不是简单地通过调整配筋来 解决问题。

***	*********	*************************************	*************************************	************	************
Ratio_	_X,Ratio	₀_Y: 表示本层 ^上	与上一层的承载	力之比	
层号	塔号	X向承载力	Y向承载力	Ratio_X	Ratio_Y
6	1	1.5859E+004	1.9867E+004	1.00	1.00
5	1	1.8878E+004	2.3506E+004	1.19	1.18
4	1	3.1811E+004	3.5750E+004	1.69	1.52
3	1	8.2598E+004	6.4772E+004	2.60	1.81
2	1	6.6645E+004	5.9232E+004	0.49	0.52
1	1	1.5098E+005	2.0383E+005	2.27	3.44

**

另外程序中可以通过指定非调整构件,避免某些截面较小或不属于主体框架柱的构件参与调整导致的配筋过大,比如某模型中的雨棚立柱,按照默认参与调整,配筋率超过 5%:

将其设置为不调整构件,让主体框架柱承担薄弱层调整,立柱配筋结果会更合理:

原因 5: 多塔相关范围划分不当

对于多塔包络设计,程序会按照一定规则进行每一个分塔相关范围的划分,某些情况自动划分不合理会导致配筋异常,如下图模型:

查看某超限构件的验算信息可以看出,构件内力不大,但是配筋异常大,文本中显示多塔取大:

N-B=22 (I=4000049, J=4000047)(1)B*H(mm)=300*700 Lb=2.78(m) Cover= 25(mm) Nfb=3 Nfb_gz=3 Rcb=30.0 Fy=360 Fyv=360 砼聚 C30 框架聚 调幅梁 矩形 Livec=1.000 stif=2.000 stif_s=2.000 tf=0.850									
η v=1. 100) .				-	6	-	0	0
-M(kNm)	-448	-368	-293	-218	-142	-109	-50	-8- -6	0
Ton Ast	157220	149130	141790	134222	125573	116897	108318	99588	90831
% Steel	83. 52	79.22	75.32	71.30	66.71	62.10	57.54	52.90	48.25
+M(kNm) LoadCase Btm Ast % Steel	33316 (9) 159843 84.91	31788 (9) 153009 81.28	30255 (9) 145669 77.38	28675 (9) 138101 73.36	26869 (9) 129452 68.77	25058 (9) 120776 64.16	23266 (9) 112197 59.60	21444 (9) 103467 54.96	19615 (9) 94711 50.31
V(kN) T(kNm) LoadCase Asv Ast Rsv	-5590 2052 (9) 8464 62479 28, 21	-5604 2052 (9) 8470 62479 28. 23	-5619 2052 (9) 8475 62479 28, 25	-5633 1285 (9) 6177 38972 20, 59	-5649 1285 (9) 6184 38972 20.61	-5666 1285 (9) 6191 38972 20.64	-5682 653 (9) 4297 19636 14. 32	-5698 653 (9) 4304 19636 14.35	-5714 653 (9) 4311 19637 14.37
剪扭验算 非加密区	: (9)V=- 箍筋面积	5590.5 : 6191	T=2051.7	ast=62	479 ast	cal=6247	9 ast1=	3063	
己多塔取;	大,取大	塔号: 3							

可在轴侧简图-自动分塔示意中查看多塔划分情况,下图右塔形成了一个"悬空"塔,导致计算异常。此时需要用户手动进行多塔范围的划分:

多塔划分操作细节,可以查看官网视频,链接如下: https://www.yjk.cn/article/775/

合理划分多塔相关范围之后,计算结果正常:

总结

面对设计结果中大面积超限显红问题,首先查看超限构件的构件信息,再按照下述方式进行排查:

a: 查看各类调整系数, 剪重比调整系数大, 基本就是振型不够引起的, 需增加振型数量或 者改用 Ritz 向量算法, 如果采用的是广东高规则排查一下是否为底部剪力法控制; 0.2 V₀ 调整系数过大, 则复核一下相关设置的参数是否有误;

b: 查看各工况内力,复核内力异常的工况。如恒载工况内力异常,可能是施工模拟引起;
活载内力异常,可能是活载不利布置引起;风内力异常大,按照原因3排查;
c: 计算配筋小,但实配较大,很可能为自动放大配筋至非薄弱引起,按照原因4排查;

d: 构件信息中有"已多塔取大"字样,按照原因5排查。

剪扭验算: (9) V=-5590.5 T=2051.7 ast=62479 astcal=62479 ast1=3063 非加密区箍筋面积: 6191 已多塔取大,取大塔号: 3

彩蛋:本篇开头提到的第三张图,原来是用户不小心把背景颜色改成了红色,程序提供了一个便捷的功能,在通用工具栏中可以快速修改背景颜色哟~

