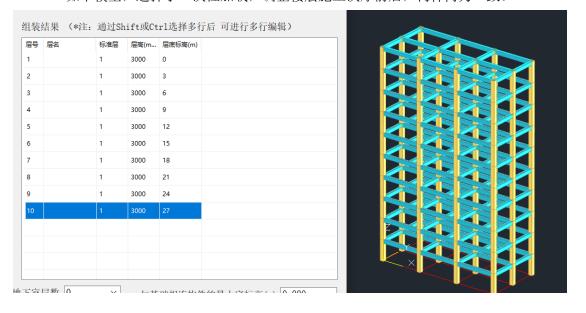
鉴定加固需要调整施工次序吗?

盈建科周胤呈

鉴定加固行业方兴未艾,使用盈建科软件鉴定加固模块的用户越来越多。由于部分用户之前主要从事新建工程设计,使用软件过程中可能会"习惯性"的选择施工模拟3来进行计算,那进行鉴定加固设计是否需要进行施工模拟呢?本篇简单讨论一下这个问题。

理论说明

指定施工次序计算是指在计算恒荷载时考虑施工次序的计算。是否考虑施工次序、考虑不同的施工次序对恒载效应的计算结果常有较大的影响。合理确定施工次序不仅符合实际情况,而且有可能减少构件的计算内力。

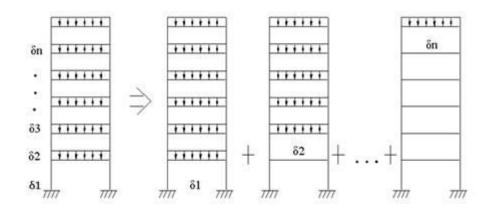

软件在计算参数中,提供处理恒载计算的 3 种算法: "一次性加载"、"施工模拟一"、 "施工模拟三",讨论之前我们先梳理一下这三个选项的具体含义。

一次性加载

一次性加载,顾名思义为一次集成整体刚度、一次完成加载。选择一次性加载之后,后续 无论怎么修改层或者构件的施工次序,程序都默认按照"一次"完成,所以修改施工次序 前后恒载工况下构件内力均一致。

如下模型,选择了一次性加载,调整楼层施工次序前后,构件内力一致。

模型一:



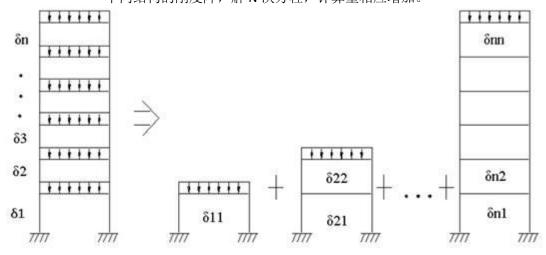
恒载作用下构件内力完全一致(某构件前后内力对比):

(i	Case)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*(*(*(DL) DL) LL) LL)	0. 2 0. 2 0. 0 0. 0	-0. 0 -0. 0 -0. 0 -0. 0	-1598. 8 -1598. 8 -287. 7 -287. 7	调整 的 0.0 0.0 0.0	が 人か 0. 2 0. 0 0. 0	-0. 0 -0. 0 -0. 0 -0. 0	-0. 4 -0. 4 -0. 1 -0. 1
(i	Case)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*((*(DL) DL) LL) LL)	0. 2 0. 2 0. 0 0. 0	-0. 0 -0. 0 -0. 0 -0. 0	-1598. 8 -1598. 8 -287. 7 -287. 7	<mark>调整</mark> 0.0 0.0 0.0	后内力 0.2 0.0 0.0	-0. 0 -0. 0 -0. 0 -0. 0	-0. 4 -0. 4 -0. 1 -0. 1

施工模拟一

模拟施工一采用一次集成整体刚度、分步加载的模型,只计入加载施工步及以下的节点位移量和构件内力,一般用来近似模拟考虑施工过程的结构受力。如图:

由于只需形成一次结构刚度矩阵,在计算机解题能力受限时,既能在一定程度上模拟施工 加载的变形效果,同时又不会对计算效率造成太大影响。


选择了施工模拟一之后,如果将层施工次序全部修改为 1,效果上就等于一次性加载。如模型中的某一根柱构件内力,施工模拟一(施工次序全修改为 1)和一次性加载两种情况内力一致,如下图:

(iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*(*(DL) DL) LL) LL)	-4. 3 -4. 3 -0. 7 -0. 7	0. 0 0. 0 0. 0 0. 0	-2180.7 -2180.7 -280.0 -280.0 拖工模拟-	-0. 0 -0. 0 -0. 0	-1. 0	0. 0 0. 0 0. 0 0. 0	5. 8 5. 8 1. 1 1. 1
二、	构件反订	·验算信息	L		(ボグトグへから	3//\/\J\/		
	Ü							
(iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*(*((DL) DL) LL) LL)	-4. 8 -4. 8 -0. 7 -0. 7	0. 0 0. 0 0. 0 0. 0	-2125. 7 -2125. 7 -280. 0 -280. 0	-0. 0 -0. 0 -0. 0 -0. 0	-6. 8 -6. 8 -1. 0 -1. 0		7. 7 7. 7 1. 1 1. 1
三、	构件设计	验算信息		施工模拟	一(施工》	欠序全修改	收为1)	
	brc	薄弱层词	周整系数, 大	于1时输出				
(iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*((*(DL) DL) LL) LL)	-4. 8 -4. 8 -0. 7 -0. 7	0. 0 0. 0 0. 0 0. 0	-2125. 7 -2125. 7 -280. 0 -280. 0		-6. 8 -1. 0	0. 0 0. 0 0. 0 0. 0	7. 7 7. 7 1. 1 1. 1
\equiv	构件设计	验算信息		一次性加	载			

施工模拟三

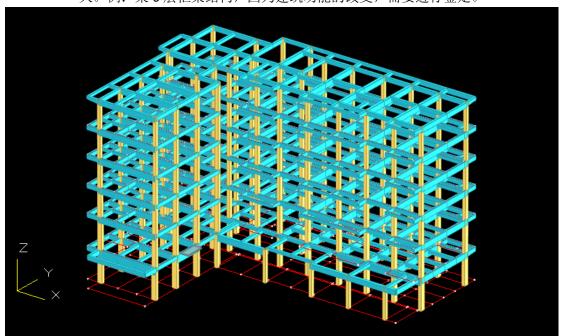
模拟施工三采用了分层刚度分层加载的模型,这种方式假定每个楼层加载时,它下面的楼层已经施工完毕,由于已经在楼层平面处找平,该层加载时下部没有变形,下面各层的受力变形不会影响到本层以上各层,因此避开了一次性加载常见的梁受力异常的现象(如中

柱处的梁负弯矩很小甚至为正等)。这种模式下,该层的受力和位移变形主要由该层及其以上各层的受力和刚度决定。用这种方式进行结构分析需要形成最多 N (总施工步数) 个不同结构的刚度阵,解 N 次方程,计算量相应增加。

同样选择了施工模拟三之后,如果将层施工次序全部修改为 1,效果上就等于一次性加载。如模型中的某一根柱构件内力,施工模拟三(施工次序全修改为 1)和一次性加载两种情况内力一致,如下图:

(:	iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*(*(*(DL) DL) LL) LL)	3. 3 3. 3 0. 7 0. 7	0. 0 0. 0 0. 0 0. 0	-2347. 2 -2347. 2 -280. 0 -280. 0	-0. 0 -0. 0 -0. 0 -0. 0	7. 5 7. 5 1. 0 1. 0	0. 0 0. 0 0. 0 0. 0	-2. 5 -2. 5 -1. 1 -1. 1
三、构件设计验算信息		施工模拟三(默认施工次序)						
(j	iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*(*((DL) DL) LL) LL)	-4. 8 -4. 8 -0. 7 -0. 7	0. 0 0. 0 0. 0 0. 0	-2125. 7 -2125. 7 -280. 0 -280. 0	-0. 0 -0. 0 -0. 0 -0. 0	-6. 8 -6. 8 -1. 0 -1. 0	0. 0 0. 0 0. 0 0. 0	7. 7 7. 7 1. 1 1. 1
三、构件设计验算信息			施工模	拟3(施工	次序全修	改为1)		
						,		
(1	iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*(*((DL) DL) LL) LL)	-4. 8 -4. 8 -0. 7 -0. 7	0. 0 0. 0 0. 0 0. 0	-2125. 7 -2125. 7 -280. 0 -280. 0	-0. 0 -0. 0 -0. 0 -0. 0	-6. 8 -6. 8 -1. 0 -1. 0	0. 0 0. 0 0. 0 0. 0	7. 7 7. 7 1. 1 1. 1
三、构件设计验算信息				一次性力	□载			

结论:


一次性加载:程序默认一次集成刚度、一次加载,施工次序菜单无效; 施工模拟一:程序默认一次集成刚度,按照施工次序菜单执行加载;

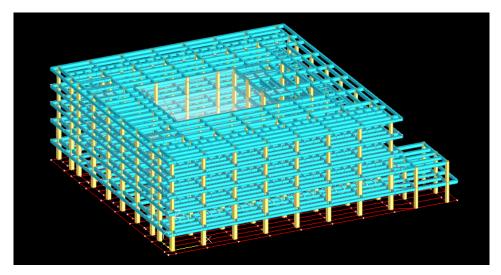
实操建议

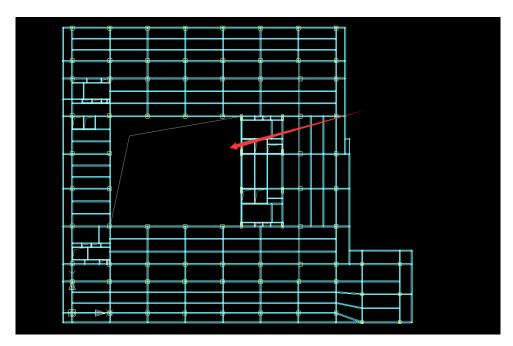
鉴定和设计的思路有所差别,鉴定是基于已有建筑进行相关评级或加固设计,都是基于结构已经完成施工的情况。而对于计算模型需要考虑施工模拟也仅在设计类规范《高规》5.1 节有所提及:

5.1.9 高层建筑结构在进行重力荷载作用效应分析时,柱、墙、斜撑等构件的轴向变形宜采用适当的计算模型考虑施工过程的影响;复杂高层建筑及房屋高度大于 150m 的其他高层建筑结构,应考虑施工过程的影响。

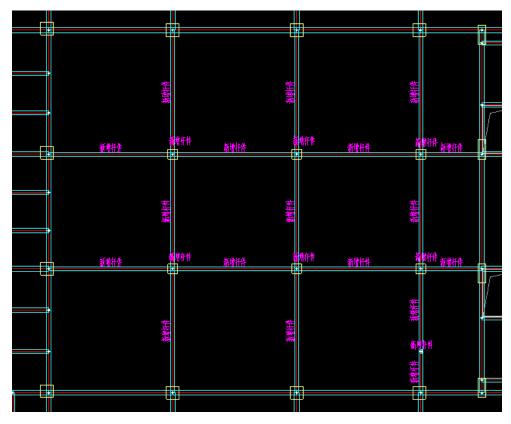
对于常规的鉴定项目, "一次性加载"和"施工模拟三"对构件评级的结果有时候差别较大。例:某6层框架结构,因为建筑功能的改变,需要进行鉴定。

分别按"施工模拟三"和"一次性加载"计算,"施工模拟三"构件评级较好,无需进行加固设计,而"一次性加载"评级结果一般,部分构件需要进行加固设计。下图为两种情况下某一层构件集评级汇总:

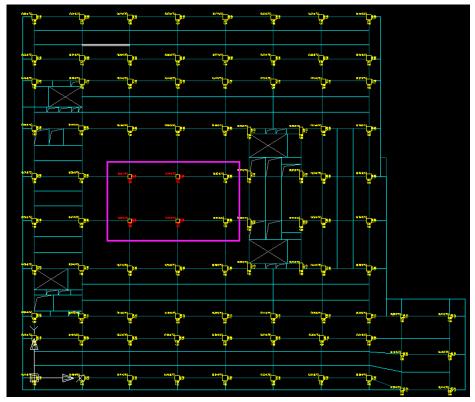




可以看出选择不同的方式计算,评级的结论可能不同,甚至影响后续的加固方案。对于常规的鉴定加固项目个人建议可以选择"一次性加载"进行计算。

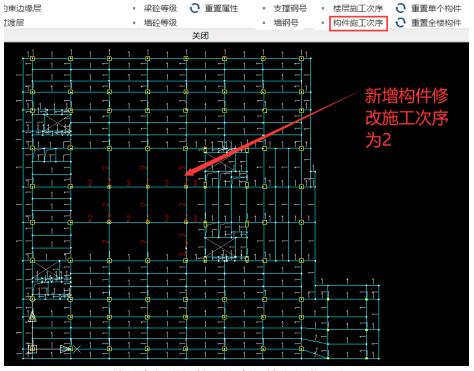

那既有建筑鉴定与加固项目是否都不涉及"施工模拟三"呢?答案是否定的。对于有新增构件的加固项目,考虑到新增构件是在主体结构刚度和加载完成之后进行的,按照实际情况模拟,则应选择"施工模拟三",再将其余构件施工次序全部调整为1(表示原模型是一次集成刚度和完成加载的),新增构件施工次序单独指定为2,最后进行计算。下面还是用实例模型来对比一下两种方式的计算结果。

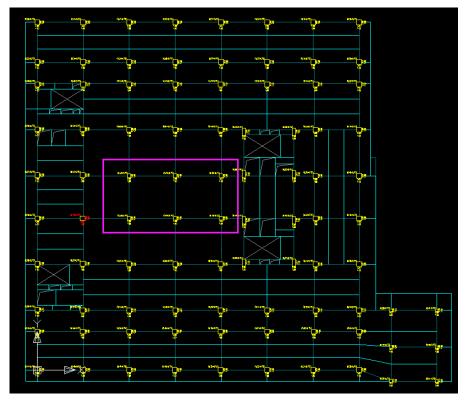
模型为5层框架结构,需要将二层原开大洞的位置重新布置上梁柱:



梁柱布置完成之后,需要在建模-鉴定加固菜单中定义为新增杆件:

建模完成之后,按照以下两种方式进行计算。


方式一:按照"一次性加载"计算,结果中6根新增柱,4根轴压比超限。


■ 板砼等级 ■ 梁钢号

• 表式施工次序 • 包络构件设置

京部加强区 。 设顶部小塔楼 。 柱砼等级

结果中新增柱轴压比全部符合规范要求:

下图为两种方式下某新增柱的内力对比,恒载工况轴力差别较大。可以看出采用不同的方式,直接影响新增构件截面尺寸、材料强度的选择。

(iCase) Shear-Y Shear-Y Axial Mx-Btm My-Btm Mx-Top My-Top

	(iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*	(EX)	79. 7	10. 5	-242.4	-41. 3	333. 4	-13. 7	-80. 7
	(EX)	79. 7	10. 5	-242.4	-41.3	333. 4	-13. 7	-80. 7
*	\/	11. 2	72. 4	213. 0	-298. 4	47. 1	75. 5	-12. 5
ale.	(EY)	11. 2	72. 4	213. 0	-298. 4	47. 1	75. 5	-12.5
*	(+WX) (+WX)	1. 2 1. 2	-0. 0 -0. 0	−3. 6 −3. 6	0. 0 0. 0	5. 0 5. 0	-0. 0 -0. 0	-0. 8 -0. 8
*	1 (-1. 2	0. 0	3. 6	-0.0	-5. 0	0. 0	0.8
	(-WX)	-1. 2	0. 0			-5. 0	0. 0	0.8
*	(+WY)	-0.0	1.1		¥ −4.5	-0.0	0. 9	0.0
	(+WY)	-0.0	1. 1	3. 3	-4. 5	-0.0	0. 9	0.0
*		0. 0	-1. 1	-3. 3	4. 5	0. 0	-0. 9	-0.0
*	(-WY) (DL)	0. 0 2. 8	-1. 1 -24. 6	-3. 3 -3806. 7	4. 5 42. 3	0. 0 3. 9	-0. 9 -80. 8	-0. 0 -10. 0
ጥ	(DL)	2. 8	-24. 6 -24. 6	-3806. 7 -3806. 7	42. 3	3. 9	-80. 8	-10.0
*	1 1	0.6	-3. 4	-412.3	6.0	1. 5	-11. 1	-1. 5
	(LL)	0. 6	-3. 4	-412.3	6. 0	1. 5	-11. 1	-1. 5
	(iCase)	Shear-X	Shear-Y	Axial	Mx-Btm	My-Btm	Mx-Top	My-Top
*						-	-	
*	EX)	79. 7	10. 5	-242. 4	-41. 3	333. 4	-13. 7	-80. 7
				-242. 4 -242. 4 213. 0		-	-	
*	(EX) (EX) (EY) (EY)	79. 7 79. 7 11. 2 11. 2	10. 5 10. 5 72. 4 72. 4	-242. 4 -242. 4 213. 0 213. 0	-41. 3 -41. 3 -298. 4 -298. 4	333. 4 333. 4 47. 1 47. 1	-13. 7 -13. 7 -13. 7 75. 5 75. 5	-80. 7 -80. 7 -12. 5 -12. 5
*	E (EX) (EX) E (EY) E (EY) E (+WX)	79. 7 79. 7 11. 2 11. 2 1. 2	10. 5 10. 5 72. 4 72. 4 -0. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6	-41. 3 -41. 3 -298. 4 -298. 4 0. 0	333. 4 333. 4 47. 1 47. 1 5. 0	-13. 7 -13. 7 75. 5 75. 5 -0. 0	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8
*	E (EX) (EX) E (EY) (EY) E (+WX) (+WX)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0	-13. 7 -13. 7 75. 5 75. 5 -0. 0 -0. 0	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8
*	E(EX) (EX) E(EY) (EY) (EY) (+WX) (+WX) E(-WX)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 -1. 2	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0	-13. 7 -13. 7 -75. 5 -75. 5 -0. 0 -0. 0 0. 0	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 0. 8
*	E(EX) (EX) E(EY) (EY) (EY) (+WX) (+WX) E(-WX) (-WX)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0 -0. 0	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0	-13. 7 -13. 7 75. 5 75. 5 -0. 0 -0. 0	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8
*	E(EX) (EX) E(EY) (EY) (EY) (+WX) (+WX) (-WX)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 -1. 2 -1. 2	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0 -5. 0	-13. 7 -13. 7 -75. 5 -75. 5 -0. 0 -0. 0 0. 0	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 0. 8
*	E(EX) (EX) E(EY) E(EY) E(+WX) E(-WX) E(-WX) E(+WY) E(-WY)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 1. 2 -1. 2 -1. 2 -0. 0 -0. 0 0. 0	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6 模拟 6 3. 3 3. 3 -3. 3	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0 -0. 0 -4. 5 -4. 5 4. 5	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0 -5. 0 -0. 0 -0. 0	-13. 7 -13. 7 -75. 5 -75. 5 -0. 0 -0. 0 0. 0 0. 0 0. 9 0. 9 -0. 9	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 0. 8 0. 0 0. 0
* * *	E(EX) (EX) (EY) (EY) (EY) (+WX) (+WX) (-WX) E(-WY) (-WY)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 -1. 2 -1. 2 -0. 0 -0. 0 0. 0	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0 1. 1 1. 1 -1. 1 -1. 1	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6 英比 : 6 3. 3 3. 3 -3. 3 -3. 3	-41. 3 -41. 3 -298. 4 -298. 4 -298. 4 0. 0 -0. 0 -0. 0 -0. 0 -4. 5 -4. 5 4. 5	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0 -5. 0 -0. 0 0. 0	-13. 7 -13. 7 -75. 5 -0. 0 -0. 0 0. 0 0. 0 0. 9 0. 9 -0. 9 -0. 9	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 -0. 8 0. 0 0. 0 -0. 0
* * *	E(EX) (EX) E(EY) (EY) (EY) (+WX) E(+WX) E(-WX) E(+WY) E(-WY) E(-WY) E(-WY) E(-WY) E(-WY)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 -1. 2 -1. 2 -0. 0 -0. 0 0. 0 3. 5	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0 1. 1 1. 1 -1. 1 -26. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6 英比 6 3. 3 3. 3 -3. 3 -3. 3	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0 -0. 0 -4. 5 -4. 5 4. 5 42. 5	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0 -0. 0 -0. 0 0. 0 6. 2	-13. 7 -13. 7 -75. 5 -0. 0 -0. 0 0. 0 0. 0 0. 9 -0. 9 -0. 9 -0. 9 -87. 5	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 -0. 8 -0. 8 -0. 0 -0. 0 -0. 0
* * * *	E(EX) (EX) E(EY) (EY) (EY) (HWX) E(HWX) E(HWX) E(HWY)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 -1. 2 -1. 2 -0. 0 -0. 0 0. 0 0. 0 3. 5 3. 5	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0 1. 1 1. 1 -1. 1 -1. 1 -26. 0 -26. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6 -3. 6 -3. 3 3. 3 -3. 3 -3. 3 -2066. 3 -2066. 3	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0 -0. 0 -4. 5 -4. 5 4. 5 42. 5 42. 5	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0 -0. 0 -0. 0 0. 0 6. 2 6. 2	-13. 7 -13. 7 -75. 5 -75. 5 -0. 0 -0. 0 0. 0 0. 0 0. 9 -0. 9 -0. 9 -0. 9 -87. 5 -87. 5	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 -0. 8 -0. 0 -0. 0 -0. 0 -11. 5 -11. 5
* * * *	E(EX) (EX) E(EY) (EY) (EY) (+WX) E(+WX) E(-WX) E(+WY) E(-WY) E(-WY) E(-WY) E(-WY) E(-WY)	79. 7 79. 7 11. 2 11. 2 1. 2 1. 2 -1. 2 -1. 2 -0. 0 -0. 0 0. 0 3. 5	10. 5 10. 5 72. 4 72. 4 -0. 0 -0. 0 1. 1 1. 1 -1. 1 -26. 0	-242. 4 -242. 4 213. 0 213. 0 -3. 6 -3. 6 英比 6 3. 3 3. 3 -3. 3 -3. 3	-41. 3 -41. 3 -298. 4 -298. 4 0. 0 0. 0 -0. 0 -0. 0 -4. 5 -4. 5 4. 5 42. 5	333. 4 333. 4 47. 1 47. 1 5. 0 5. 0 -5. 0 -0. 0 -0. 0 0. 0 6. 2	-13. 7 -13. 7 -75. 5 -0. 0 -0. 0 0. 0 0. 0 0. 9 -0. 9 -0. 9 -0. 9 -87. 5	-80. 7 -80. 7 -12. 5 -12. 5 -0. 8 -0. 8 -0. 8 -0. 8 -0. 0 -0. 0 -0. 0

以上个人更倾向于方式二的计算结果。当然影响内力因素众多,包括结构布置、材料强度、荷载大小等,而最终的鉴定或者加固结果与其余各工况内力大小都有关,变量太多, 单个模型结论不一定具有普遍的规律性。

最后,本篇建议为笔者个人观点,仅供参考,具体工程还需用户酌情把握。