## 应用 YJK-STF 进行钢制储罐基础结构设计的算例

郭峰

YJK 储罐地基基础设计软件 (YJK-STF)是一款石油化工行业储罐地基基础设计的专用软件, 它采用参数化建模方式, 可高效便捷的进行钢制储罐基础设计。目前主要支持三种类型: 立式储罐、球罐以及卧式容器。



YJK-STF 钢制储罐基础设计软件和 YJK 结构软件主程序一脉相承,如果对 YJK 结构设 计软件比较熟悉的话,在操作上并不需要太多的学习成本。这里结合一个实例进行介绍, 方便大家快速把握 YJK-STF 钢制储罐基础设计软件在使用中的要点。



本算例采用立式圆筒储罐举例,程序的主要操作流程如下所示,总体上分为四步:参数化建模——基础布置——荷载输入及查看——计算及结果输出。

### 一、参数化建模

本算例选择工程储罐规格为 2000m<sup>3</sup>:



关于罐壁底端传给环墙的线分布荷载标准值(g<sub>k</sub>),当为浮顶 罐时,仅为罐壁的重量(包括保温层重量);当为固定顶罐(包括内 浮顶罐)时,应为罐壁和罐顶的重量(包括保温层重量)。

1. 构件参数页:

程序自动生成相应的罐体参数,相应的参数可以在帮助文件中进行查看,并支持交互 修改。对于环墙厚度,程序支持按《钢制储罐地基基础设计规范》GB 50473-2008 第 4.1.2 条 计算环墙厚度。计算假定为:环墙底压强 = 地基土压强,详见上图条文说明第 4.1.2 条。

下面是一个环墙厚度的计算算例:

储罐净重=459100 kg,

环墙半径=18.5m,

环墙高度=2.2m,

环墙顶面至罐内最高液面高度 hL=19.5m,

罐壁伸入环墙顶面宽度系数 β=0.5,

环墙重度 γc=25 kN/m^3,

罐内使用阶段储存介质的重度 γL=8.3 kN/m^3,

环墙内各层材料的平均重度 γm=18 kN/m^3,

先计算环墙顶面线荷载,gk = 459100/1000\*10/(3.14\*2\*18.5)=39.5 kN/m,将计算条件 各参数代入下式:

$$\beta = 1 - \frac{g_{k}}{\gamma_{L}h_{L}b} - \frac{h}{h_{L}} \left(\frac{\gamma_{c} - \gamma_{m}}{\gamma_{L}}\right)$$

得: b=603mm。

在软件中点击"计算"按钮后,程序会自动弹出按照规范进行计算的环墙厚度计算书, 给出相应的计算参数及计算结果。

| 载参数 | 规格(立方米)     |              | 轴网               |                          |
|-----|-------------|--------------|------------------|--------------------------|
| 龙限值 | ○ 200 ○ 500 | 0 1000 0 20  | 000 圆弧半径(mm)     | 7750                     |
|     | 3000 5000   | 0 10000 0 20 | 0000 圆弧转角(度)     | 30                       |
|     | 储罐          |              | 环遭               |                          |
|     | 公称容积(m3)    | 2000         | 厚度(mm) 计算        | 382                      |
|     |             | 4.0505       | 地面以上高度(mm)       | 1200                     |
|     | 躍体忌高度(mm)   | 13595        | 混凝土等级            | C30 🗸                    |
|     | 罐壁高度(mm)    | 11900        | 钢筋等级             | $\rm HRB400 \qquad \sim$ |
|     | 罐体内径(mm)    | 15500        | 环墙重度(kN/m3)      | 25                       |
|     | 罐底坡度        | 1: 50        | 筏板               |                          |
|     | 设计液位(mm)    | 10800        | ☑ 布置筏板           |                          |
|     | 试水液位(mm)    | 11100        | 厚度(mm)<br>広た宮(a) | 650                      |
|     | 储罐净重(kg)    | 67800        | (相对结构±0)         | -2.1                     |
|     | 操作时总重(1/2)  | 1767640      | 外挑长度(mm)         | 1000                     |
|     |             | 2171800      | 混凝土等级            | C30 🗸                    |
|     | 允水后忌里(kg)   | 2171000      | 钢筋等级             | $\rm HRB400$ $\sim$      |
|     |             |              |                  |                          |

| <pre>* * yjk 环墙厚度计算书</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *<br>*      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 计算时间: 2023年3月30日   当前版本: 5.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| *<br>* 以下输出基础环墙的厚度计算结果<br>* 依据规范: 钢制储罐地基基础设计规范(GB50473-2008)第4.1.2条<br>* b = gk / [(1 - β) * γL * hL - (γc - γm) * h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *********** |
| *<br>* 各符号含义如下<br>* b: 环墙厚度(m)<br>* gk: 罐壁底端传至环墙顶端的坚向线分布荷载标准值(kN/m)<br>* β: 罐壁伸入环墙顶面宽度系数,可取0.4°0.6<br>* γc: 环墙的重度(kN/m3)<br>* γL: 罐内使用阶段储存介质的重度(kN/m3)<br>* γm: 环墙内各层材料的平均重度(kN/m3)<br>* hL: 环墙顶面至罐内最高储液面高度(m)<br>* h: 环墙高度(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******      |
| $ \begin{array}{l} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | *           |

#### 2. 荷载参数页:

程序也自动生成了填料和储液的重度以及填料高度等参数,并支持交互修改,地震作 用和风荷载信息也在这里输入:

| 参数输入-何载参数    |                      |      | >                                                                                |
|--------------|----------------------|------|----------------------------------------------------------------------------------|
| 构件参数         | 荷载参数                 |      |                                                                                  |
| 荷载参数<br>变形限值 | 填料重度(kM/m3)          | 18   | 地震作用<br>地震影响系数 计算 0.043                                                          |
|              | 填料高度(mm)             | 2650 | 放大系数 1                                                                           |
|              | 储液容重(kN/m3)          | 8.3  | <ul> <li>罐体影响系数</li> <li>1.1</li> <li>动液系数</li> <li>0.681</li> <li>解锁</li> </ul> |
|              | 水容重(kM/m3)           | 10   | 风荷载<br>基本风(云(kN/m2) 0.45                                                         |
|              | 固定顶活荷载<br>标准值(kN/m2) | 1    |                                                                                  |
|              | 基本雪压(kN/m2)          | 0.4  | 风荷载体型系数 0.5                                                                      |
|              | 设防水位(m)              | 0    | 地形修正系数 1                                                                         |
|              | 罐壁伸入环墙<br>顶面宽度系数     | 0.5  | 风向景响系数 1                                                                         |
|              | 侧压力系数                | 0.33 | 风荷载放大系数 1.2                                                                      |
|              | 恢复默认                 | 确定   | 取消                                                                               |

地震作用下的"地震影响系数"支持一键计算,点击"计算"之后可在弹出的窗口中直接进

行相应信息的输入即可得到地震影响系数的结果:

| 地震影响系数                                                  |                |                                                       | ×     |
|---------------------------------------------------------|----------------|-------------------------------------------------------|-------|
| 水平地震影响系数最大值<br>地震烈度(设计基本地震加速度) 6(0.<br>水平地震影响系数最大值 0.04 | 05g) ~         | 特征周期值<br>设计地震分组: ● — ○ 二<br>场地类别 10 ~<br>特征周期值(s) 0.2 | ΟΞ    |
| 基本自振周期<br>罐壁距底板1/3高度处的名义厚度(mm)                          | 5              | 阻尼调整系数&形状参数<br>阻尼比                                    | 0.04  |
| 储罐设计最高液位Hw(mm)<br>储罐内直径D(mm)                            | 10800<br>15500 | 阻尼调整系数n2                                              | 1.069 |
|                                                         | 0.427          | 衰减指数v<br>直线下降船的下降斜盔调整系数n                              | 0.919 |
| 哨雅→ 喻液 稱 軟 抓 如 单 色 抓 周 别 (5)                            | 0.043          | 高級 (1947X1) (1947) 平列亚示欧(1                            | 取消    |

对于地震作用,程序按照《构筑物抗震设计规范》GB 50191-2012 计算总水平地震作用标准值。



对于风荷载,程序按照《工程结构通用规范》GB 55001-2021 第 4.6.1 条计算风荷载标 准值,考虑参数有:

- (1) 基本风压
- (2) 风压高度变化系数
- (3) 风荷载体型系数
- (4) 地形修正系数

(5) 风向影响系数

(6) 考虑风荷载脉动的增大系数,即:风荷载放大系数

程序按照《建筑结构荷载规范》GB 50009-2012 条文说明第 8.2.1 条计算风压高度变 化系数,考虑截断高度,A、B、C、D 场地粗糙度的风压高度变化系数分别不小于 1.09、 1.00、0.65、0.51。

$$\mu_{z}^{A} = 1.284 \left(\frac{z}{10}\right)^{0.24}$$
$$\mu_{z}^{B} = 1.000 \left(\frac{z}{10}\right)^{0.30}$$
$$\mu_{z}^{C} = 0.544 \left(\frac{z}{10}\right)^{0.44}$$
$$\mu_{z}^{D} = 0.262 \left(\frac{z}{10}\right)^{0.60}$$

按《工程结构通用规范》GB 55001-2021 第 4.6.5 条,风荷载放大系数不小于 1.2,因此软件默认值取 1.2。

#### 3. 变形限值参数页:

程序根据《钢制储罐地基基础设计规范》GB50473-2008 第六章的内容默认生成,还可以进行交互修改:

| 参数输入-变形限值    |                     |        | ×  |
|--------------|---------------------|--------|----|
| 构件参教         | 变形限值                |        |    |
| 荷载参数<br>变形限值 | 储罐基础整体倾斜            | 0.007  |    |
|              | 储罐基础周边<br>不均匀沉降     | 0.0025 |    |
|              | 储罐中心与储罐周边<br>的相对沉降差 | 0.007  |    |
|              | 沉降观测点数量             | 4      |    |
|              |                     |        |    |
|              |                     |        |    |
|              |                     |        |    |
|              |                     |        |    |
|              |                     |        |    |
|              |                     |        |    |
|              | 恢复默认                | 确定     | 取消 |

参数设定好之后确定生成模型,并且可以通过右下角的快捷按钮控制是否显示上部罐体,以方便查看模型:



控制按钮位于右下角:



## 二、基础布置

基础筏板在参数化建模时已经生成,这里主要是桩基以及地基处理的布置,程序目前 根据《钢制储罐地基处理技术规范》GB/T 50756-2012,支持碎石桩、水泥粉煤灰碎石 桩、水泥土搅拌桩、灰土挤密桩、钢筋混凝土桩复合地基 5 种地基处理方法。



以 CFG 桩为例,布桩形式和计算参数进行输入后,点击计算后程序会自动进行地基处

理后地基承载力的计算及 CFG 桩的布置:

| 水泥粉煤灰碎石桩法              |                                          |       | × |
|------------------------|------------------------------------------|-------|---|
| 布桩参数                   | 计算参数                                     |       |   |
| ☑桩顶是否设置桩帽              | 基础底面处天然地基<br>承载力特征值fak(kPa)              | 100   |   |
| 桩径(mm) 350             | 处理后桩间土承载力<br>特征值fsk(kPa)                 | 120   |   |
| 桩长(m) 10               | 单桩竖向承载力特征值(kN)                           | 200   |   |
| 桩帽厚度(mm) 350           | 柏良亚均直径d(m)                               | 0.35  |   |
| 桩帽直径(mm) 500           | 桩词十承载力折减系数B                              | 0.7   |   |
| 桩帽顶部宽出<br>桩边尺寸(mm) 100 | 桩土立方体抗压强度                                | 2000  |   |
| 桩帽底部宽出 100             | (kPa)                                    |       |   |
| 租辺尺寸(mm)               | 时 异结果<br>单桩分担的处理地基面积<br>的等效回声系结(m)       | 1.695 |   |
| 型压序度(mm) 050           | 由导效圆直控 <sup>3</sup> 2(m)<br>桩身截面积Ap(m^2) | 0.196 |   |
| 布桩型式                   | 桩土面积置换率m                                 | 0.087 |   |
|                        | 复合地基承载力特征值<br>fsak(kPa)                  | 165.3 |   |
| 12(d)(d)(2)(mm)        | 桩身强度验算                                   |       |   |
| 环向间距(mm) 1500          | ○ 满足                                     | ◎不满足  |   |
| <b>桩距(mm)</b> 1500     | 各复合土层的压缩模里与该<br>层天然地基压缩模里的比值ξ            | 1.653 |   |
| 条物说明                   |                                          |       |   |
| 2 70. 02 73            |                                          |       |   |
|                        |                                          |       |   |
|                        |                                          |       |   |
|                        |                                          |       |   |
| 计算                     | 确定 取消                                    |       |   |



进行沉降的计算时,需输入地质资料,与主程序操作一致,地质资料输入后可以进行 土层的三维图查看:



## 三、荷载输入及查看

在荷载输入菜单下, 依次分别进行下面"分项系数"、"荷载组合表"和"生成荷载"三个按 钮的操作, 软件会根据设置自动生成荷载以及荷载组合。



分项系数菜单中,可以对《建筑结构可靠性设计标准》和《建筑与市政工程抗震通用 规范》选择是否勾选,相关工况的分项系数会随之改变。还可以对各个工况选择是否考 虑,勾选会考虑,取消勾选则不考虑。

| <ul> <li>执行《建筑结构可靠</li> <li>世设计统一标准》</li> <li>(GB50068-2018)</li> <li>执行《建筑与市政工</li> <li>跟抗需備用规范》</li> </ul> | + 地震组合<br>γG(恒载)<br>不利<br>有利<br>1.2 | レース ALE |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|
| (GB55002-2021)<br>工况组合选项                                                                                     | γQ(可变荷载)<br>储液荷载 1.3                | ∨i<br>储液荷载 1.3                              |
| ☑恒载                                                                                                          | 试水静压 1.1                            | 风荷载 1.4                                     |
| ☑平台上的活荷载                                                                                                     | 风荷载 1.4<br>平台上的活荷载 1.4              | 水平向地震 1.3                                   |
| ☑储液荷载                                                                                                        | Ψ c(组合系数)                           | 组合系数<br>风荷载 0.2                             |
| ☑ 试水静压 ☑ 风荷载                                                                                                 | 风荷载 0.9<br>平台上的活荷载 0.9              | 准永久值系数                                      |
| ☑水平地震                                                                                                        | 抗浮组合<br>水浮力<br>其本组合系数 1.35          | 储波问载 1 试水静压 0.85                            |
| ☑水浮力                                                                                                         | 举年组合系数<br>水浮力<br>标准组合系数 1           |                                             |
| §数说明                                                                                                         |                                     |                                             |

| <b>京</b> 号 | 名称      |     | 类型                  | 重力荷载   | 非地震分项(不利) |     | ) 非:               | 非地震分项(有利) |     | łł  | 震分项(不利) | 地震分 |
|------------|---------|-----|---------------------|--------|-----------|-----|--------------------|-----------|-----|-----|---------|-----|
| 1          | 储液荷载    |     | 活载                  | 1      | 1.3       |     | 0                  | 0         |     | 1.3 | }       | 1   |
| 2          | 试水静压    |     | 活载                  | 0      | 1.1       |     | 0                  | 0         |     | 1.2 | 2       | 1   |
| 3          | +x 🛛    |     | +X 🛛                | 0      | 1.4       |     | 0                  |           |     | 1.4 | ł       | 1   |
| 4          | +y 🕅    |     | +Y 🛛                | 0      | 1.4       |     | 0                  |           |     | 1.4 | ł       | 1   |
| 5          | X向地震    |     | X地震                 | 0      | 0         |     | 0                  |           |     | 0   |         | 0   |
| 5          | Y向地震    |     | Y地震                 | 0      | 0         |     | 0                  |           |     | 0   |         | 0   |
|            | 1.545.1 |     | 5-5-5-5<br>5-5-5-10 | -      |           |     |                    |           |     | -   |         | -   |
| 工况组制       | È       |     |                     |        |           |     |                    |           |     |     |         |     |
| 组合号        | 分析方法    | 恒载  | 储液荷载                | ば 试水静压 | 活载        | 水浮力 | <mark>+x</mark> ⊠, | +yՋԼ      | X向地 | 調   | Y向地震    |     |
| 1          | 线性      | 1.2 | 1.3                 |        |           |     |                    |           |     |     |         |     |
| 2          | 线性      | 1   | 1.3                 |        |           |     |                    |           |     |     |         |     |
| 3          | 线性      | 1.2 | 1.3                 |        | 1.26      |     |                    |           |     |     |         |     |
| 4          | 线性      | 1   | 1.3                 |        | 1.26      |     |                    |           |     |     |         |     |
| 5          | 线性      | 1.2 | 1.3                 |        |           |     | 1.26               |           |     |     |         |     |
| 5          | 线性      | 1   | 1.3                 |        |           |     | 1.26               |           |     |     |         |     |
| 7          | 线性      | 1.2 | 1.3                 |        |           |     |                    | 1.26      |     |     |         |     |
| 3          | 线性      | 1   | 1.3                 |        |           |     |                    | 1.26      |     |     |         |     |
| 9          | 线性      | 1.2 | 1.3                 |        | 1.26      |     | 1.26               |           |     |     |         |     |
| 10         | 线性      | 1   | 1.3                 |        | 1.26      |     | 1.26               |           |     |     |         |     |
| 11         | 线性      | 1.2 | 1.3                 |        | 1.26      |     |                    | 1.26      |     |     |         |     |
| 12         | 线性      | 1   | 1.3                 |        | 1.26      |     |                    | 1.26      |     |     |         |     |
| 13         | 线性      | 1.2 |                     | 1.1    |           |     |                    |           |     |     |         |     |
| 14         | 线性      | 1   |                     | 1.1    |           |     |                    |           |     |     |         |     |
| 15         | 线性      | 1.2 |                     | 1.1    | 1.4       |     |                    |           |     |     |         |     |
| 16         | 线性      | 1   |                     | 1.1    | 1.4       |     |                    |           |     |     |         |     |
| 17         | 线性      | 1.2 | 1.3                 |        |           |     |                    |           | 1.3 |     |         |     |
| 18         | 经制性     | 1   | 1.3                 |        |           |     |                    |           | 13  |     |         |     |

生成荷载之后,可以到自定义工况菜单下面进行查看,点击"工况设置"后,在弹出的 菜单中可以查看各个工况下的荷载值:

|    |                  |          | 5   |                       | 1 <b>5</b> L | 3 🗐 |    |         |    |            | _  |      |    |
|----|------------------|----------|-----|-----------------------|--------------|-----|----|---------|----|------------|----|------|----|
|    | <mark>轴线网</mark> | 格        | 构件有 | 置                     | 基础           | 布置  | 荷載 | 输入      | 自会 |            |    | 楼层组织 | 装  |
|    |                  | <b>;</b> | ţ   | $\downarrow \bigcirc$ | **           | H   | →  | , atter |    | <b>~</b> 0 | Ŀ, | P    |    |
| 工况 | 楼板               | 梁墙       | 柱   | 板间                    | 次梁           | 墙洞  | 节点 | 筏板      | 删除 | 替换         | 拾取 | 构件   | 层间 |
| 设置 |                  |          | -   |                       |              |     |    | 荷载      |    |            | 布置 | 复制   | 复制 |
|    | 输入               |          |     |                       |              |     |    |         | 编  | 辑          |    |      |    |

| E况名    | 工况类型 | 质量折减 | 活荷折减1 | 活荷折減2 | 添加(A)           |
|--------|------|------|-------|-------|-----------------|
| □储液荷载  | 活载   | 1.00 | 1     | 1     |                 |
| ] 试水静压 | 活载   | 0.00 | 1     | 1     | 1130欠 (M.)      |
| ] 水浮力  | 活载   | 0.00 | 1     | 1     | nndnA           |
| _ +x⊠, | +x 🕅 | 0.00 | 1     | 1     | 開係              |
| _ +y风  | +y风  | 0.00 | 1     | 1     | v== = = =       |
| 」 X向地震 | x地震  | 0.00 | 1     | 1     | 清理              |
| ☑ ¥向地震 | y地震  | 0.00 | 1     | 1     |                 |
|        |      |      |       |       | ~ 무스            |
|        |      |      |       |       | 72 ()           |
|        |      |      |       |       | · 确定(1)         |
|        |      |      |       |       | ta⊽ = Liste imi |
|        |      |      |       |       | 浮动菌口            |
|        |      |      |       |       |                 |
|        |      |      |       |       |                 |
|        |      |      |       |       |                 |
|        |      |      |       |       |                 |

计算前,在前处理中点击"生成数据及数检",并进入三维轴侧简图中,对计算模型进行查看。软件可以自动在筏板下生成土弹簧,通过勾选"支座"选项后可以查看土弹簧的弹簧刚度。另外还可以对各个荷载工况分别查看荷载的布置情况,这些和主程序都是一致的。



然后点击"计算", 计算完成后自动跳到结果菜单。

## 四、结果查看

#### 1. 配筋结果查看

程序目前提供环墙结果两种计算方式的结果查看,分别是程序默认的有限元计算结果和根据《钢制储罐地基基础设计规范》GB50473-2008 第四章的公式计算结果:

| 有限元结<br>果 |                                                                                                                                                       |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ΠQ<br>γ   | 理及计算     设计结果     基础计算及结       ①     ○     ↓     抽压比       构件<br>编号     配筋简图     环墙配筋     ↓     前压比       编号     ···································· |  |
|           | 规范算法<br>结果                                                                                                                                            |  |

有限元+规范计算两种方式的设计计算结果,可以有效考虑筏板对受力的有利影响,并 且可以支持环墙竖向钢筋校核,增加了设计的经济性与安全性。



#### 2. 基础计算结果查看

地基承载力验算结果查看,程序会自动考虑前面定义的地基处理方案得到的处理后 的地基承载力来进行验算。



另一个是比较重要的沉降结果查看,程序提供了专门的"储罐地基变形验算"的按钮功

能,点击后就会弹出一个文本的验算结果,方便查看:



### 五、施工图绘制

软件可以读取基础计算结果自动出基础施工图,点击"基础施工图"的"新绘底图"—— "筏板"就可以绘制出筏板基础的平面图,点击"剖面图"——"筏板剖面图",选择剖切线之后

#### 可以绘制出筏板基础的剖面图:







从上面算例中可以看到, 盈建科钢制储罐地基基础设计软件 YJK-STF 是一款集成了上部与基础整体参数化建模、桩复合地基处理、规范与有限元结合计算、基础施工图绘制等 多个功能的实用工具, 是一款真正体现钢制储罐地基基础设计特点、结合储罐地基基础设计规范及其出图标准的全流程结构设计软件。

# 六、亮点总结

盈建科钢制储罐地基基础设计软件 YJK-STF 有以下六大功能亮点:



感兴趣的设计师朋友们快来下载学习吧!软件下载地址: <u>https://dl-cdn.yjk.cn/downjgzq/</u>

本次算例模型下载地址: <u>https://pan.yjk.cn/sharing/zMk3V7HfB</u>