盈建科软件刚度系数设置解析

盈建科 李高仰

YJK-A 从 4.0 版本开始,为更好的支持广东高规对竖向荷载、地震和风工况下不同刚度 系数的需求,对原有的刚度系数选项做了全新的改版。新版软件将刚度系数分为竖向荷载、 地震作用和风荷载(如图 1 所示),且在 4.1.0 及之后各版本软件均可以在前处理特殊梁中 查看和修改上述三种荷载工况下的刚度系数(如图 2 所示)。

	计算控制信息 > 剛度系数──── □梁刚度系数			
	坚向荷载 □ 梁刚度放大系数按10《砼表	观》5.2.4条取		
	梁刚度放大系数上限	2		
	中梁刚度放大系数	1		
	边梁刚度放大系数上限	1		
	地震作用			
	☑ 中梁刚度放大系数	2		
	边梁刚度放大系数	1.25		
	连梁刚度折减系数	0.7		
	风荷载			
	☑ 中梁刚度放大系数	2		
	边梁刚度放大系数	1.25		
	连梁刚度折减系数	0.7		
凤	1 三种荷载工况刚度	玄勬设罟		
Z		小奴仗旦		
> (二)	104 - 盈建料建筑结构计算模型 预定力 工具箱 砌体设计 基础	火——YJK—A[4.1.0]— 設计 施工階设计 預	國物件施工图 网络构图	图 非线性计算 二维图形编辑
* 5 1 1 0 - · 56 5 70		🖪 😘 🏥	01 👱 :	ш 🚽 🗑 🤱
梁 特殊梁 特殊柱 特殊支撑 特殊機 板属性 节点属性 抗震 材料 重要性 着级 强度 系数	性能 隔栗 人防 超配 删除 复制 多设计 设计 构件 系数	塔定义 楼层属性 风荷载	计算长度 温度荷载 活	荷折減 生成数据 计算简图 计算 及数检
 不瑪耀梁 途梁 (门式別梁 一端校摄 招) 托塘特换 交叉配筋 耗能梁 两端校摄 调 四时扩播环境 对色程度 更示例 具体性常 第二 	日折減 ・ 別度系数 ・ 組合深自动 重系数 ・ 別度系数(风) ・ 組合深全援 か 本 の の の を あ の の の の の の の の の の の の の の の	E成 · 设抗剪连接件 E成 · 影抗剪连接件	 ・ 杆端释放 ・ ・ ・	
	· 组合梁删除 学问	 ·	 实体构件 、实体构件 、构 	件別度 宽厚比限值

图 2 三种荷载下刚度系数查看和修改

图 1 中竖向荷载下刚度系数取值有两种设置方法一种是直接设置中梁、和边梁的刚度 系数,另一种是勾选"梁刚度放大系数按 10《混规》5.2.4 条取值¹",两种方法仅对中梁的 刚度系数取值有差异且会引起周期变化,但变化不大(详表 5)。

刚度系数取值对计算结构模态起至关重要的作用,为方便各位工程师更好的理解和应用 该选项,接下来将通过一个实际工程案例来说明情况。

案例1为两层地下室,地上两个塔楼,一个框架结构,另一个框筒结构,结构均规则且 不存在楼板开洞、错层,连体等复杂形式,详见图3。地震和风荷载参数一样,仅通过改变 刚度系数(边梁和中梁)来说明不同的设置对结构刚度和构件内力的影响,连梁刚度系数在 地震和风荷载工况下分别取值0.7和1。需要说明的是方案A虽没勾选地震和风荷载,但连 梁刚度系数仍采用地震和风荷载下的刚度系数。

表 1 为不同刚度系数设置的五个方案,同时计算参数勾选了"整体指标采用强刚,其他指标采用非强刚"。

对比参数	竖向荷载		地震	作用	风荷载	
模型	中梁	边梁	中梁	边梁	中梁	边梁
方案 A	2	1.25	/	/	/	/

表 1 不同方案刚度系数设置

方案 A1	按混规取值		/	/	/	/
方案 B	2	1.25	2	1.25	2	1.25
方案C	/	/	2	1.25	2	1.25
方案 D	/	/	1	1	1	1
方案 E	/	/	1	1	2	1.25

注: 打"/"表示不在图 2 中方框内打勾, 竖向荷载不勾选(不按 10 规范取值)软件默认的系数为 1; 地震和风荷载不勾选时在特殊梁中未显示; 连梁刚度系数在地震和风荷载下分别取值 0.7 和 1, 可以 在 4.1 及后续版本前处理的特殊梁查看和修改数值。

图 3案例1结构三维示意图 图 4梁柱内力、变形位置示意图(图中红色粗实线为研究对象) 除表 1 中刚度系数不一致外其他参数均保持一致。通过对比四个方案的周期和内力的 变化来研究刚度系数对其影响。周期数值来自计算结果中 wzq 文件同时输出的强刚和非强 刚模型的两组数据,强刚模型周期用于计算地震作用,非强刚模型周期用于计算风荷载²(在 计算参数-风荷载模块下点"自动读取周期"后自动读取非强刚模型的周期数值,若没有计 算非强刚模型则读取强刚模型下周期)。内力采用较高塔楼的第七层一跨梁、柱(详图 4), 记为案例 1 A 跨梁。

模型 周期	方案 A	方案 B	方案C	方案D	方案 E
T1	1.8375(Y)	1.8375(Y)	1.8375(Y)	2.0332(Y)	2.0332(Y)
T2	1.5692(X)	1.5692(X)	1.5692(X)	1.6926(X)	1.6926(X)
Т3	1.3587(扭转)	1.3587(扭转)	1.3587(扭转)	1.5324(扭转)	1.5324(扭转)
T4	0.5390(扭转)	0.5390(扭转)	0.5390(扭转)	0.8085(X)	0.8085(X)
T5	0.4393(X)	0.4393(X)	0.4393(X)	0.7547(扭转)	0.7547(扭转)
Т6	0.4273(Y)	0.4273(Y)	0.4273(Y)	0.6232(扭转)	0.6232(扭转)

表	2	案例 1	强刚模型下不同方案刚度系数对应周期	(_S)
---	---	-------------	-------------------	------------------

表 3 案例 1 非强刚樽	聖下不同方案刚度系数对应周期	(_S)
---------------	----------------	------------------

模型 周期	方案 A	方案 B	方案 C	方案 D	方案 E
T1	1.8748(Y)	1.8748(Y)	1.8748(Y)	2.0337(Y)	2.0337(Y)
T2	1.5913(X)	1.5913(X)	1.5913(X)	1.6929(X)	1.6929(X)
Т3	1.4745(扭转)	1.4745(扭转)	1.4745(扭转)	1.5325(扭转)	1.5325(扭转)
T4	0.7177(X)	0.7177(X)	0.7177(X)	0.8098(X)	0.8098(X)
T5	0.7104(扭转)	0.7104(扭转)	0.7104(扭转)	0.7564(扭转)	0.7564(扭转)
T6	0.5761(扭转)	0.5761(扭转)	0.5761(扭转)	0.6240(扭转)	0.6240(扭转)

周期模型	方案 A	方案 B	方案 C	方案 D	方案 E
W ₁ -X	2410.9	2410.9	2415.8	2417.3	2417.3
W_1-Y	4094.5	4094.5	4106.7	4109.1	4109.1
E1-X	10916.44	10916.44	10916.44	10406.42	10399.74
E1-Y	9602.34	9602.34	9602.34	9294.12	9291.89

表 4 案例 1 不同方案地震和风荷载基底剪力(kN)对比

由表 2、表 3 和表 4 可知:

1) 方案 A、B、C 和 D 周期和基底剪力对比可知,只要勾选地震作用的刚度系数,软 件在计算模态时采用地震工况的刚度。这是软件模态计算的内在逻辑。

为说明竖向工况下采用规范值与采用大于 1 的最大限值的差异,计算 4 个不同案例在 方案 A 和 A1 刚度系数下的周期,案例 2 为常规剪力墙结构住宅,案例 3 为超高层框筒结 构,案例 4 为 120 米高大底盘框剪结构。

表 5 竖向荷载工况下采用《混规》取值与采取最大限值周期对比(s)

模型	案	例1	案	例 2	案	例 3	案	例 4
周期	方案 A	方案 A1						
T1	1.8375	1.8748	2.5624	2.5792	4.2189	4.2667	2.8773	2.8971
T2	1.5692	1.5913	2.4976	2.5092	3.2411	3.2635	2.3129	2.3233
Т3	1.3587	1.4745	1.7571	1.7602	2.2928	2.3221	2.0303	1.9853
T4	0.5390	0.7177	0.7782	0.7820	1.2417	1.2554	0.7812	0.7789
T5	0.4393	0.7104	0.5860	0.5886	0.9906	0.9961	0.7757	0.7739
Т6	0.4273	0.5761	0.4564	0.4572	0.8561	0.8659	0.6118	0.6073

由表 5 可知, 竖向荷载工况下刚度系数按混凝土规范与按中、边梁最大限制取值计算 的周期略有差异,主要是因为按规范取值的中、边梁刚度系数小于、等于按最大限值的数值。 表 6 案例1A 跨梁、柱四个方案内力对比

表 7 案例 1 A 跨梁、柱四个方案恒载内力和竖向位移对比

N		恒载 X 向弯矩(kN · m)	恒载下竖向位移(mm)
---	--	------------------	-------------

由表 6 和表 7 可知:

1) 方案 A、B 和方案 C 在地震和风荷载下弯矩图一致,主要是因为三个方案均采用地 震作用工况下刚度系数,计算的周期一致,;

2) 由方案 A、B 与方案 C、D 在恒载下弯矩和位移对比可知,梁构件的刚度不同导致 C、D 方案竖向位移大于 A、B 方案,从而引起内力的差异。

结论:

1、只要勾选地震作用模态计算就采用该工况下的刚度,否则采用竖向荷载下的刚度。

2、风荷载参数下点"自动读取周期"优先采用非强刚模型周期;若没有非强刚模型则 读取强刚模型下周期。

¹ 《混凝土结构设计规范》GB 50010-2010(2015 年版)

² 《V4 结构计算软件 YJK-A 用户手册及技术条件》2022 年版