版本号: Release 4.1

目 录

第-	-章	新规范	1
	1.1	上部结构计算增加对《混凝土结构通用规范》的支持	1
		1.1.1 更新部分结构中剪力墙的最小配筋率	1
	1.2	上部结构计算增加对深圳市《高层建筑混凝土结构技术规程》SJG 98-2021 的支持	1
		1.2.1 全面支持深圳市《高层建筑混凝土结构技术规程》SJG 98-2021	1
		1.2.2 设防烈度默认联动为7度	1
		1.2.3 依据 3.1.4 条,输出两个方向侧向刚度差值	2
		1.2.4 依据 3.4.4 条,细化扭转位移比限值	2
		1.2.5 依据 3.5.2 条, 输出本层与相邻下层的侧向刚度比值	3
		1.2.6 依据 3.5.4 条,输出本层与相邻下层的受剪承载力比值	4
		1.2.7 依据 3.5.6 条,输出各层的抗剪裕度指数	4
		1.2.8 依据 3.7.1、3.7.2 条,输出风和地震作用下的位移角限值	4
		1.2.9 依据 3.9.1 条,输出剪力墙墙肢的轴压比	5
		1.2.10 依据 3.9.2 条,输出剪力墙约束边缘构件的轴压比	5
		1.2.11 依据 4.2.8 条, 自动判断结构的楼层最小剪力系数	5
		1.2.12 依据第5章, 支持性能设计	5
		1.2.13 依据 7.1.3-6 条,执行转换结构的剪压比、轴压比限值	6
		1.2.14 依据 7.4.4 条,执行加强层及其相邻层的剪力墙、框架柱轴压比限值	6
		1.2.15 依据 7.4.7 条,执行加强层及其相邻层的剪力墙按底部加强部位的要求设计.	7
		1.2.16 依据 7.7.1 条,对框筒结构执行二道防线的内力调整	7
	1.3	施工图增加对《混凝土结构通用规范》的支持	7
		1.3.1 板施工图的相关调整	8
		1.3.2 梁施工图的相关调整	.10
		1.3.3 柱施工图的相关调整	.10
		1.3.4 墙施工图的相关调整	.13
	1.4	基础增加对《建筑与市政工程抗震通用规范》地震组合系数联动的支持	.13
	1.5	基础增加对《混凝土结构通用规范》的支持	.16
	1.6	组合梁剪跨区划分增加对《钢结构设计标准》的支持	.16
第:	二章	建模平台	.18
	2.1	工作树-设计信息项中增加配筋率显示	.18
	2.2	衬图对齐中增加框选功能	. 18

YJK4.1 版本升版说明

	2.3 增加下弦垂直封口布置网架方式	19
	2.4 执行文字放大缩小操作的加速	20
	2.5 增加对不合理截面尺寸定义的过滤功能	20
	2.6 钢筋强度等级 HTRB630 名称改为 T63/E/G	22
	2.7 钢梁/钢柱/钢撑截面(工字钢)显示上下翼缘宽度	24
	2.8 型钢库截面增加马钢热轧 H 型钢库	24
	2.9 导入 dwg 功能中增加右侧菜单	25
	2.10 快速导入 dwg 新增功能	26
	2.11 增加相对坐标输入起始参照点功能	27
	2.12 增加基础构件转 IFC 功能	27
第	三章 上部结构计算	30
	3.1 增加 "时域显式随机模拟法" 算法	30
	3.2 特殊构件定义中对梁的刚度系数、连梁刚度折减系数菜单细分	30
	3.3 高级选项中增加"X、Y方向基本周期对应的振型号"	31
	3.4 高级选项中增加"判断高规 8.1.7 条单片墙不超过 30%的限制"	31
	3.5 高级选项中增加"输出边缘构件纵筋大于 5%时的超限信息"	32
	3.6 高级选项中增加"错层梁截面连接刚性杆自动铰接"	32
	3.7 高级选项中增加"按柱配筋的墙单侧配筋面积"及"非按柱配筋的墙单侧配筋面积	"
		34
	3.8 前处理"荷载校核"-"平面导荷"增加"房间属性"选项	35
	3.9 wzq 中增加输出强制刚性楼板模型的质量参与系数	35
第[四章 施工图	37
	4.1.楼板施工图中增加负筋最小长度控制参数	37
	4.2 提升梁施工图的文字避让效率	37
	4.3 梁施工图中增加对构造柱属性的判断	37
	4.4 调整箍筋肢距的计算方式	37
	4.5 调整连续梁 Hw 的确定方式	38
	4.6 取消对梁纵筋间距的容差控制	38
	4.7 增加梁截面原位标注的功能	39
	4.8 增加梁跨中底筋标注位置的控制参数	39
	4.9 墙柱表绘制时增加构件个数的显示	40
	4.10 墙施工图中增加箍筋直径的级差控制参数	40
	4.11 墙柱纵筋选筋采用两种直径时放开最小直径的控制参数	40
	4.12 右下角工具栏增加钢筋面积查询表	41
	4.13 柱施工图中异形柱选筋结果的调整	42

YJK4.1 版本升版说明

4.15	5 梁施工图中的 bug 修改	44
4.16	5 楼板施工图中的 bug 修改	46
第五章	基础	48
5.1	以任意轮廓方式建立筏板及加厚区时增加正交、极轴追踪、动态输入坐标功能	48
5.2	增加冲切验算高级参数:柱(墙)冲切筏板考虑不平衡力矩(桩筏基础)	48
5.3	增加冲切验算高级参数:梁板高差小于设定值时柱(墙)按平筏验算	49
5.4	增加显示承台桩拔力平均值及最不利组合号	51
5.5	改进整体抗浮验算计算结果显示	51
5.6	基础送审报告增加选项,允许修改图面字体大小与绘图色彩	53
5.7	改进筏板裂缝验算,按最不利标准组合进行验算	53
5.8	优化新老地质资料切换界面逻辑	54
第六章	钢结构施工图	56
6.1	全楼材料表工程量统计改进	56
6.2	主次梁刚接节点改进	56
6.3	节点详图去除多余的重复线段	56
第七章	装配式	57
7.1	叠合板中同一根钢筋遇多个线盒或洞口时,可以统一弯折避让	57
7.2	优化叠合板详图绘制细节	57
7.3	优化预制墙墙身竖向分布筋初始生成规则	58
7.4	高精度显示下,预制柱增加柱顶、柱顶键槽的三维显示	59
7.5	上海规程装配率计算时,计算书中输出各预制构件的总体积	59
7.6	装配率计算修正问题	59
7.7	布置叠合板的房间,修正板计算时选择 crb600h 等级钢筋时,计算输出钢筋等级没	殳有
选用 crb	600h 等级的问题	60
7.8	其他修正问题	60
第八章	减隔震模块	61
8.1	反应谱迭代方式增加阻尼器迭代,包括位移型和速度型	61
8.2	迭代方法确定的等效参数可以在减震器参数中显示	63
8.3	最大阻尼比对能量法也起作用	64
8.4	连接单元产品库增加标准和企业分类,云南减震规程产品入库	65
8.5	弹性时程直接计算减震结构附加阻尼比	66
8.6	弹性时程中,隔震支座增加多组合、平均值统计	67
8.7	增加中震非隔震模型	68
8.8	不同隔震支座类型以不同颜色显示	69
8.9	增加线性时程选波	70

第一章 新规范

1.1 上部结构计算增加对《混凝土结构通用规范》的支持

1.1.1 更新部分结构中剪力墙的最小配筋率

依据《混凝土结构通用规范》4.4.7-2 条的要求,框架-剪力墙结构、板柱-剪力墙结构、筒体 结构中,剪力墙竖向、水平向分布钢筋的配筋率均不应小于 0.25%。当勾选"采用通用规范"后, 软件自动对框剪、板柱剪力墙、框筒及筒中筒结构中剪力墙的水平向分布钢筋执行该条。需注意竖 向分布钢筋配筋率由用户输入,软件不自动与规范要求取包络。

1.2 上部结构计算增加对深圳市《高层建筑混凝土结构技术规程》SJG 98-2021 的支持

1.2.1 全面支持深圳市《高层建筑混凝土结构技术规程》SJG 98-2021

在结构所在地区选择"深圳高规",则在计算及设计中全面的支持深圳市《高层建筑混凝土结构 技术规程》SJG 98-2021。

YJKCAD-参数输入-结构总体信	息					×
结构总体信息	结构总体信息					
计算控制信息 控制信息	结构体系	框架结构	\sim	恒活荷载计算信息	一次性加载	\sim
	结构材料	钢筋混凝土	\sim	风荷载计算信息	一般计算方式	\sim
分析求解参数 风荷载信息	结构所在地区	深圳高规	\sim	地震作用计算信息	计算水平地震作用	\sim
基本参数 指定风荷载	地下室层数	全国 广东高规DBJ1	5-92-2013	□ 计算吊车荷载	🗌 计算人防荷载	
地震信息		上海 广东宫规 (202	1)	□考虑预应力等效荷	截工况	
地震信息 白定义影响系数曲线	散回端所在伝考(伝)	深圳高规		□生成传给基础的刚	度	
时域显式随机模拟法	与基础相连构件最大	:底标高(m)	0	凝聚局部楼层刚 部层数(0表示到	度时考虑的底 全部楼层) 3	
性能设计	裙房层数	[0	□ 上部结构计算考虑	基础结构	
性能包络设计 隔震减震		, I	-	🗌 生成绘等值线用数	(据	
设计信息	转换层所在层号	l	5	🗌 计算温度荷载		
沽何载信息 构件设计信息	加强层所在层号	[考虑收缩徐变的 温度效应折减系	砼构件 0.3	
构件设计信息 钢构件设计信息				□ 竖向荷载下砼墙轴	向刚度考虑徐变收缩影	向
包络设计	局性层刻		0	墙刚度折减系数	0.6	
材料信息 材料参数	施工模拟加载层步长		1	□老虎街去塘刚度		
钢筋强度	施工模拟一和三采用	相同的加载顺	序。 她心指实施			
ロト室信息 荷载组合	工次序"中修改。	1111 115 四周周	化学的	□ 米用週用规氾		
组合系数						
11日本 自定义工况组合						
鉴定加固 准配子						
太氏入						

1.2.2 设防烈度默认联动为7度

因为深圳地区的设防烈度为7度,故当选择了"深圳高规"后,地震参数页中的设防烈度会自动修改为7度。

1.2.3 依据 3.1.4条,输出两个方向侧向刚度差值

规程 3.1.4 条,剪力墙结构两个方向的侧向刚度不宜相差超过 30%。根据规范组解释,应该判断 两个方向的基本周期之间的差值不大于 30%,即(大周期-小周期)/大周期应小于等于 30%,不过很 多情况下软件自动判断的两个方向的基本周期不一定合理,并且这个计算很简单,故软件没有输出 周期的差值。而是当结构类型选择"剪力墙结构"时,软件在 wmass 中输出每层两个方向的侧向刚 度的差值,用户可以自行决定是否采用。

**	********* 深圳 ********	*************************************	*************************************	********** <u>8过</u> 30%) **********	
居号	塔号	x向刚度	Y向刚度	差值	
20	1	6.3461E+005	5.1437E+005	18.95%	
19	1	1.0726E+006	8.9688E+005	16.38%	
18	1	1.3475E+006	1.1582E+006	14.05%	
17	1	1.5086E+006	1.3257E+006	12.12%	
16	1	1.6013E+006	1.4301E+006	10.69%	
15	1	1.6560E+006	1.4976E+006	9.56%	
14	1	1.6914E+006	1.5490E+006	8.42%	
13	1	1.7208E+006	1.5998E+006	7.03%	
12	1	1.7577E+006	1.6609E+006	5.51%	
11	1	1.8054E+006	1.7381E+006	3.73%	
10	1	1.8671E+006	1.8367E+006	1.63%	
9	1	1.9353E+006	1.9536E+006	0.94%	
8	1	2.0200E+006	2.1001E+006	3.81%	
7	1	2.1316E+006	2.2889E+006	6.87%	
6	1	2.2822E+006	2.5362E+006	10.01%	
5	1	2.5018E+006	2.8797E+006	13.12%	
4	1	2.8544E+006	3.4183E+006	16.49%	
3	1	3.2672E+006	4.0607E+006	19.54%	
2	1	3.0723E+006	4.0995E+006	25.06%	
1	1	8.4083E+006	1.2258E+007	31.41%	超出30%
注: t	也可用结构	整体指标,如两个方向的	的周期值进行判断[规范	组建议 <mark>]</mark>	

1.2.4 依据 3.4.4条, 细化扭转位移比限值

规程 3.4.4 条,当楼层竖向构件的计算平均层间位移很小时,扭转位移比限值可适当放松,对放 松的限值定量的进行细化。软件会自动计算楼层平均层间位移角与层间位移角限值的比值,然后得 到扭转位移比的限值,并在文本 NEW 中显红表示超限。

7	1 7000004	82.78	77.79	1.06	3300	
	7000016	8.55	8.05	1.06		
6	1 6000016	74.23	69.74	1.06	3300	
	6000016	10.01	9.42	1.06		
5	1 5000004	64.22	60.32	1.06	3300	
	5000004	11.28	10.61	1.06		
4	1 4000016	52.94	49.71	1.06	3300	
	4000004	12.36	11.62	1.06		
3	1 3000016	40.57	38.09	1.07	3300	
	3000004	13.23	12.43	1.06		
2	1 2000016	27.34	25.66	1.07	3300	
	2000004	13.84	12.99	1.07		
1	1 1000004	13.50	12.66	1.07	3300	
	1000004	13.50	12.66	1.07		
X方向量 X方向量	最大位移与层平均位移 最大层间位移与平均层	的比值: 1 间位移的比值	.07 (1层1 [: 1.07	塔) (1层1塔)	<u></u> _	
*** 深 X方向的 X方向劲))) 时楼层平均层间位移角 田转位移比限值: 1.5	3.4.4条 ** [1/254]与层 0	* 间位移角限(直[1/500]的比值	[: 1.97	

1.2.5 依据 3.5.2条,输出本层与相邻下层的侧向刚度比值

依据 3.5.2 条,软件在 wmass 中输出本层与相邻下层的侧向刚度比值,当低于 0.5 倍时,给出超限提示。

)	****** 	***************** 圳高规3.5.2 各 *************	************ 层侧向刚度比 ***********	*************************************
层号	塔号	×向刚度比	Y向刚度比	
20	1	0.59	0.57	
19	1	0.80	0.77	
18	1	0.89	0.87	
17	1	0.94	0.93	
16	1	0.97	0.95	
15	1	0.98	0.97	
14	1	0.98	0.97	
13	1	0.98	0.96	
12	1	0.97	0.96	
11	1	0.97	0.95	
10	1	0.96	0.94	
9	1	0.96	0.93	
8	1	0.95	0.92	
7	1	0.93	0.90	
6	1	0.91	0.88	
5	1	0.88	0.84	
4	1	0.87	0.84	
3	1	1.06	0.99	
2	1	0.37	0.33	宜采取加强措施
1	1	1.00	1.00	

1.2.6 依据 3.5.4条,输出本层与相邻下层的受剪承载力比值

依据 3.5.4 条,软件在 wmass 中输出本层与相邻下层的受剪承载力比值,当低于 0.5 倍时,给出 超限提示。

)	*** (_Ratio,	******** 深圳高规: ********* Y_Ratio	3.5.4-楼层抗剪承载力 : 表示本层与下一层的	计算(上层比下层宜大于 承载力之比	F0.5)		
	层号	塔号	X向抗剪承载力	Y向抗剪承载力	X_Ratio	Y_Ratio	
	10	1	3.5040E+002	3.4963E+002	0.69	0.69	
	9	1	5.0715E+002	5.0465E+002	0.74	0.74	
	8	1	6.8414E+002	6.8182E+002	0.80	0.80	
	7	1	8.5581E+002	8.5408E+002	0.87	0.87	
	6	1	9.8844E+002	9.8593E+002	0.22	0.22	宜采取加强措施
	5	1	4.4297E+003	4.4297E+003	3.33	3.34	
	4	1	1.3298E+003	1.3264E+003	0.98	0.97	
	3	1	1.3630E+003	1.3612E+003	0.99	0.99	
	2	1	1.3777E+003	1.3777E+003	1.00	1.00	
	1	1	1.3750E+003	1.3750E+003	1.00	1.00	

1.2.7 依据 3.5.6条,输出各层的抗剪裕度指数

依据 3.5.6 条的公式,软件用每层的抗剪承载力除以多遇地震作用下每层按弹性方法计算的层剪 力得到每层的裕度指数,在 wmass 中输出。此处的层剪力是剪重比调整之后的剪力。

		深圳高规3.5.6	- 楼层抗剪裕度指数				
***	*******	*****	******	*****			
层号	塔号	X向抗剪承载力	Y向抗剪承载力	x向地震层剪力	Y项地震层剪力	X向裕度指数	Y向裕度指数
20	1	7.8873E+003	1.1425E+004	289.0	366.2	27.3	31.2
19	1	8.0177E+003	1.1532E+004	537.9	671.9	14.9	17.2
18	1	8.2171E+003	1.1782E+004	744.1	916.1	11.0	12.9
17	1	8.3450E+003	1.2000E+004	908.2	1101.8	9.2	10.9
16	1	8.5018E+003	1.2214E+004	1035.6	1237.8	8.2	9.9
15	1	8.6403E+003	1.2508E+004	1134.8	1336.9	7.6	9.4
14	1	8.7979E+003	1.2722E+004	1216.2	1413.8	7.2	9.0
13	1	8.9595E+003	1.2939E+004	1288.4	1481.4	7.0	8.7
12	1	9.1187E+003	1.3092E+004	1356.8	1548.5	6.7	8.5
11	1	9.2768E+003	1.3303E+004	1423.8	1619.2	6.5	8.2
10	1	1.0044E+004	1.4446E+004	1490.0	1695.5	6.7	8.5
9	1	1.0206E+004	1.4733E+004	1556.8	1779.2	6.6	8.3
8	1	1.0370E+004	1.4946E+004	1626.6	1871.9	6.4	8.0
7	1	1.0553E+004	1.5112E+004	1701.5	1974.2	6.2	7.7
6	1	1.0729E+004	1.5304E+004	1782.0	2083.3	6.0	7.3
5	1	1.1002E+004	1.5665E+004	1864.5	2192.1	5.9	7.1
4	1	1.3374E+004	1.9550E+004	1950.6	2301.5	6.9	8.5
3	1	1.3603E+004	1.9496E+004	2022.7	2389.8	6.7	8.2
2	1	1.3155E+004	1.7982E+004	2079.6	2456.9	6.3	7.3
1	1	1.3287E+004	1.7861E+004	2096.4	2475.8	6.3	7.2
5层 15	答 <mark>x</mark> 向抗剪裕	谷度最小: 5.9					
*5层 15	苔Y向抗剪裕	答度最小: 7.1					

1.2.8 依据 3.7.1、3.7.2条,输出风和地震作用下的位移角限值

规程 3.7.1 条,给出结构在风荷载作用下的位移角限值,规程 3.7.2 条,给出各个结构类型在地 震作用下的位移角限值。程序自动判断结构类型,在文本 NEW 中输出限值,并对超限的结果显红处 理。

	X向	1/74 > [1/650](2层1塔)
取入证例用(地震)	Y向	1/75 〉 [1/650](2层1塔)
	X向	1/257 > [1/500](1层1塔)
取入证例用(从)	Y向	1/257 > [1/500](1层1塔)

1.2.9 依据 3.9.1 条,输出剪力墙墙肢的轴压比

规程 3.9.1 条,给出剪力墙墙肢轴压比限值,软件按照要求输出剪力墙墙肢的轴压比限值。

1.2.10 依据 3.9.2条,输出剪力墙约束边缘构件的轴压比

规程 3.9.2 条,要求计算剪力墙约束边缘构件的轴压比,轴压比限值取与剪力墙抗震等级相同的 框架柱轴压比限值。该框架柱轴压比限值取"框架-剪力墙"结构中的框架柱轴压比限值。软件在设 计结果模块的"轴压比"-"边缘构件轴压比"菜单中输出该结果。

1.2.11 依据 4.2.8 条, 自动判断结构的楼层最小剪力系数

规程 4.2.8 条,针对不同场地类别给出不同的楼层最小剪力系数,软件自动根据场地类别进行判断。

1.2.12 依据第5章, 支持性能设计

规程第 5 章,给出性能设计的一系列要求,软件据此进行支持。在"计算参数"中增加深圳高规的性能设计菜单,提供中震下性能 1-4,大震下性能 2-5 的设计。

软件默认底部加强区剪力墙、转换柱、转换梁为关键构件,其他剪力墙、框架柱、支撑为普通 竖向构件,梁为耗能构件,根据规程 5.2 节对这些构件默认指定正斜截面的弹性、不屈服或屈服, 用户可以在"特殊构件定义"-"性能设计"-"抗震性能水准《SJG 98-2021》"中进行修改。

中震或大震的弹性设计,荷载组合使用的是不考虑与抗震等级有关的增大系数的基本组合,效应使用的是构件承载力设计值及考虑构件承载力抗震调整系数;中震或大震的不屈服设计,荷载组合使用的是不考虑与抗震等级有关的增大系数的标准组合,效应使用的是构件承载力标准值。规程 6.6节只给出了中震的说明,经与规范组沟通,大震设计与中震一样。

1.2.13 依据 7.1.3-6条,执行转换结构的剪压比、轴压比限值

规程 7.1.3-6 条,给出了转换梁和转换柱的剪压比及轴压比限值。对于剪压比,相对全国高规, 非抗震下由 0.2 改成了 0.15,抗震下不变。对于轴压比,给出了特一级和一级下型钢混凝土柱和钢 筋混凝土柱的轴压比限值,相对全国高规有些变化。

1.2.14 依据 7.4.4 条,执行加强层及其相邻层的剪力墙、框架柱轴压比限值

规程 7.4.4 条,规定加强层及其上、下相邻一层的核心筒剪力墙轴压比不宜超过 0.4,框架柱轴 压比不宜超过 0.55。软件对通过"计算参数"页中设置的加强层,及其上、下相邻层执行该条。需 注意,软件会同时与全国高规表 6.4.2 得到的限值取更不利,当柱子为转换柱,混凝土强度大于 C70 时,可能表 6.4.2 更不利。

1.2.15 依据 7.4.7条,执行加强层及其相邻层的剪力墙按底部加强部位的要求设计

规程 7.4.7 条,规定加强层及其上、下相邻一层的核心筒剪力墙应按底部加强部位的要求设计。 软件对通过"计算参数"页中设置的加强层,及其上、下相邻层执行该条。对于加强层及其上、下 相邻层,软件自动对剪力墙抗震等级进行放大,按照放大后的抗震等级取底部加强部位的剪力系数; 当结构类型选框筒或框支时,水平分布筋配筋率取 0.3%。

1.2.16 依据 7.7.1 条,对框筒结构执行二道防线的内力调整

规程 7.7.1 条,提出框筒结构在执行二道防线内力调整时,对核心筒剪力放大的规则,即框架部分分配的楼层地震剪力小于该层剪力的 5%时,该层核心筒承担的地震剪力应增大 5%;框架部分分配的楼层地震剪力小于该层剪力的 10%时,该层核心筒承担的地震剪力应增大 10%。

软件在结构类型选择"框筒结构"或"筒中筒结构"时,自动执行该条。

1.3 施工图增加对《混凝土结构通用规范》的支持

自 2022 年 4 月起新版的《混凝土结构通用规范》正式实施,该规范中对部分条文进行了调整, 部分内容会影响到施工图的配筋设计结果。所以,当在上部结构设计参数中勾选"采用通用规范" 时,施工图中的部分内容也会根据新的《混凝土结构通用规范》来执行,当不勾选该参数时,施工 图设计时的相关构造仍按照原来的规范要求执行。

YJK4.1 版本升版说明

1.3.1 板施工图的相关调整

根据新版《混凝土结构通用规范》4.4.6条的要求,取消了对 400Mpa 钢筋的允许最小配筋百分 率为 max (0.15,45*ft/fy)的要求,即钢筋强度等级为 400Mpa 时,仍然按照受弯构件的最小配筋率 max (0.2,45*ft/fy)取值。

	-	力类型	最小配筋百分率			新版》	昆凝土通用规范的要求	
	<u> </u>	强度等级 500MPa	0.50		12			
	全部纵	强度等级 400MPa	0.55					
受压构件	向锅筋 -	强度等级 300MPa、335MPa	0.60					
		一侧纵向钢筋	0.20	C				
受弯构件	偏心受拉	、轴心受拉构件一侧的受拉钢筋	0.20和 45f(/f,中的较大值	条文中取消	肖了对	1		
2	返类受弯构 500MIPa的 大值; 烏心受拉构	件(不包括悬臂板)的受拉纲炮 阴筋时,其最小配筋百分率应允许 件中的受压钢筋,应按受压构件-	5,当采用强度等级 400MPa、 午采用 0.15 和 45f _i /f ₇ 中的较 一倾纵向铜筋考虑;		向普 钢筋 0.15	新新市 新市市 新市市 新市市 新市市 市市市 市市市市 市市市市市市市市市市	266年1月21日,1月20日,1月10日,1	增加0.10%采用; 受弯构件,当纵向受打 最小配筋率应允许采用
2 3 3 4 5	级类受弯构 500MPa的 大值; 高心型拉构 受压构件的 构变动构件。 和	件(不包括悬臂板)的受拉钢着 <u>阴筋时</u> ,其最小配筋百分率应允许 件中的受压钢筋,应按受压构件- 全部纵向钢筋和一侧纵向钢筋的 件一侧受拉钢筋的配筋率均应按 大编心受拉构件一侧受拉钢筋的	5、当采用强度等级 400MPa、 午采用 0. 15 和 45f.//5,中的较 一侧纵向钢筋考虑: 泥筋率以及轴心受拉构件和小 构件的全载面面积计算; 泥筋率应接全载面面积扣除受		向普 钢筋 0.15 的最	節最小 節最小 輸 線 線 線 線 線 板 一 新 一 前 最 小 画 一 前 最 小 画 一 常 板 一 秋 一 秋 一 秋 一 和 の . 45 f ₄ / 一 初 1.45 f ₄ / 一 初 1.45 月 二 日 二 1.45 - 1.45 - 1	2. 前季中应接表中的规定间。 前季应使表中的规定间。 (本在这条板之外的板类) (500MPa的钢筋时,其 方,中的较大值; 方,中的较大值; 方,中的较大值; 方,中的较大值; 方,中的较大值;	增加0.10%采用; 受弯构件,当纵向受打 最小配筋率应允许采F 板,极伊受拉普迪钢用
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	级类受弯构 500MPa的 大值; 变拉件的变体生动。 实现一个变量。 一变量。 一个变量。 一变量。 一变量。 一变量。 一变量。 一变量。 一变量。 一变量。 一	件(不包括悬臂板)的受拉钢度 胸筋时,其最小配筋百分率应允许 件中的受压钢筋,应按受压构件- 全部纵向钢筋和一侧纵向钢筋的 件一侧受拉钢筋的配筋率均应按柱 大编心受拉构件一侧受拉钢筋的 (bf-b) h/后的数面面形计算;	5、当采用强度等级 400/1Pa、 件采用 0. 15 和 45f//f,中的较 一顿级向锅筋考虑: 配筋率以及输心受控构件和小 构件构全载面面积计算: 配筋率应按全载面面积扣除受 细筋" 医和识是力方向面不过		向普 钢筋 0.15 的最	 第最小商 第最小商 第最小商 第二 	21 新年 14 2 年 16 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	增加。1.0%采用; 受弯构件,当纵向受引 最小配筋率应允许采片 板,板伊受拉普通钢用
2 3 4 5 6	500MPa的 大编受角受王当力中 大编受有受重要的 大编受有不同的 大编受有一个。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 大编受相关。 无言。 无言。 无言。 无言。 无言。 无言。 无言。 无言。 无言。 无言	件(不包括悬臂板)的受拉纲发 胸筋时,其最小配筋百分率应允好 件中的受压钢筋,应按受压构件- 金部纵向钢筋和一侧纵向钢筋的 件一侧受拉钢筋的配筋率均应按 大偏心受拉构件一侧受拉钢筋的 (bi-b) hi、后的载面面积计算; 件载面周边布置时,"一侧纵向向 雪的纵向钢筋。	6、当采用强度等级 400MPa、 并采用 0. 15 和 45f//f,中的较 一频低向频筋考虑: 配筋率以及轴心受拉构体和小 构体的金载面面积计算, 配筋率应按金载面面积扣除受 钢筋" 紧指沿受力方向两个对		向普 钢筋 0.15 的最	 第最小雨 第二次 第二次	26 第 年 (14) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	增加 0.10%采用: 受弯构件,当纵向受力 最小配筋率应允许采F 板,极界受拉普迪钢加 标能率(%) 最小配筋率
	500MPa的 大值。受加 局受压。 有受压。 有受压。 有受压。 有受压。 有受压。 有受压。 有受压。 有	件(不包括悬臂板)的受拉纲度 胸筋时,其最小配筋百分率应允许 体中的受压钢筋,应按受压构件, 全部纵向钢筋和一侧纵向钢筋的 件一侧受拉钢筋的配筋率均应按 大偏心受拉构件一侧受拉钢筋的 (b ⁱ -b) h ⁱ 后的载面面积计算; 件载面制边布置时,"一侧纵向钉 2004	6、当采用强度等级 400/1Pa、 并采用 0. 15 和 45f//f,中的较 一频低向钢筋考虑; 配筋率以及轴心型拉构体和小 构体的全载面面积计算; 配筋率应按全载面面积扣除受 跟筋"系指沿受力方向两个对		向普 钢筋: 0.15	第第最小预 第二次 第二次 第二次 第二次 第二次 第二次 第二次 第二次 第二次 第二次	21第二届这半级目前规定值 的第三应按表中的规定值 、 柱支承板之外的板类 (500MPa的钢筋时,其 (方,中的较大值; 于地基上的钢筋混凝土 立小于 0.15%。 6 纵向爱力普通钢筋的最小 均均作类型 强度等级。QMIG	增加 0.10%采用: 受弯构件,当纵向受打 最小配筋率应允许采F 板,极步受拉普通钢用 从配筋率(%) 最小配筋率 0.50

楼板施工图中在配筋计算参数中增加下图所示控制参数,初次生成参数文件时是读取的前处理 的参数设置状态,当无前处理参数定义时,该参数默认不勾选。

不勾选时,按照《混规》8.5.1 条控制最小配筋率。勾选时,当钢筋强度设计值 fy 小于 435Mpa 时,最小配筋率按照 max (0.2,45ft/fy) 取值; fy 大于等于 435Mpa 时,除悬挑板及无梁楼盖外最小配筋率按照 max (0.15,45ft/fy) 取值。对于悬挑板及无梁楼盖,不管是否勾选该参数,最小配筋率都按照 max (0.2,45ft/fy) 取值。

1.3.2 梁施工图的相关调整

根据新版《混凝土结构通用规范》4.4.8-4条的要求,取消了原规范中对于"梁端纵向受拉钢筋配筋率大于 2%时,箍筋直径增大 2mm"的要求。但根据规范组的解释,目前新规范的执行仍处于过渡期,所以在《混规》、《高规》等修订前仍执行 2010系列规范中相应条文,只是不再作为强条来控制。

11.3.6 1	框架梁的 纵向受拉	的钢筋配置应符合 1钢筋的配筋率不应	下列规定: 如小于表11.3.6-1规	2015版》 见定的数 _运 ,	昆凝土规范										
		表 11.3.6-1 框势	吴梁纵向受拉钢筋的	的最小配筋百分率	(%)										
	拾爾 第	级	梁中	位置											
	Dune 17	ž ž	産産	跨中						新版演解十通田和荷448~	1冬				
	一级	0.40和80/	ī/fy中的较大值	0.30和65ft/f,中	的较大值					4/10C/06/06-12/10/10/96/10 11 110					
	二级	§ 0.30 ⁻ 和 65 <i>j</i>	ī/f,中的较大值	0.25 和 55 ft/fy中	的较大值			4	梁端箍筋的加密区	长度、箍筋最大间距和	最小直径应符				
	三、四	级 0.25 和 55 /	u/fy中的较大值	0.20和45 f1/fy中	的较大值			合表4	. 4. 8-2 的要求; —级	、二级抗震等级框架架	, 当箍筋直径				
2	框如梁梁	端截面的底部和1	而部纵向受力钢筋截	山口 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	按计算确定4	小 —级		大于1	2mm、肢数不少于 4	肢且肢距不大于150m	m 时,箍筋加				
- 抗震等级	等级不应小于0.5; 二、三级抗震等级不应小于0.3; 密区最大间距应允许放宽到不大于 150mm。														
3	ε守级小型小丁U.3; →、二级机展守级小型小丁U.3; 3 梁端箍筋的加密区长度、箍筋最大间距和箍筋最小直径,应按表11.3.6-2采用;当 器纵向受拉钢筋配筋率大于2%时,志中箍筋最小直径应增大2mm。														
梁端纵向	受拉钢箱	訪配筋率大于2%B	寸,表中箍筋最小直	直径应增大2mm。		_		抗震	加密区长度(取较大值)	<	箍筋最小直径				
		表 11.3.6-2	框架梁梁端箍筋加	加密区的构造要求				等级	(mm)	(mm)	(mm)				
	抗震	加密区长度	箍筋最	大间距	最小直径			_	2.0hb, 500	$h_{\rm b}/4$, 6 <i>d</i> , 100	10				
	寺敬	(mn)		am) 	(mm)			Ξ.	1.5h _b , 500	h _b /4, 8d, 100	8				
	一级 21	音梁高和 500 中的 较大值	纵向钢筋直径的 和 100 中	6倍,梁高的1/4 的最小值	10			Ξ	1.5 <i>h</i> _b , 500	h _b /4, 8d, 150	8				
								四	1.5 <i>h</i> _b , 500	$h_{\rm b}/4$, 8 <i>d</i> , 150	6				
	二级		纵向钢筋直径的 和 100 中	8 倍,梁高的 1/4 ¤的最小值	8	_		注,表	表中 d 为纵向钢筋直径, hb	为梁截面高度。					
	三级 ^{1.5}	倍梁高和 500 中的 较大值	纵向钢筋直径的 和 150 中	8 倍,梁高的 1/4 中的最小值	8	新	i版混凝土通用	规范中取 曼	消了对"梁端纵向受拉钢 要求,所以在箍筋选筋及标)筋配筋率大于2%时,箍筋重 交审时需要进行调整	配径增大2mm"的				
	四级		纵向钢筋直径的 和 150 中	8 倍,梁高的 1/4 ¤的最小值	6		-								
	注: 箍:	筋直径大于 12mm、 大间距应允许适当加	数量不少于 4 肢且剧 3宽,但不得大于 150	5距不大于 150mm 时 mm。	,一、二级的										

所以在 4.1 版本中不管是否勾选"采用通用规范",仍然按照混规或抗规中的要求进行选筋和校审。

1.3.3 柱施工图的相关调整

根据新版《混凝土结构通用规范》的要求,柱施工图主要进行了以下四项内容的调整。

1、取消了IV类场地下对柱中全部纵向受力钢筋最小配筋率的调整——4.1不执行

目前 4.1 版本中该项调整未执行,仍然按照旧版规范从严处理,即不管是否勾选"采用通用规范",都按照原规范中提到的最小配筋百分率增加 0.1 来处理。

程序中对于较高的高层建筑判断原则为:

- (1) 框架柱-框架结构大于 40m;
- (2) 异形柱-异形柱结构大于 28m;
- (3) 非框架结构的框架柱-非框架结构大于 60m。

2、调整对柱根范围的判断

原程序: 柱根是取的最底层柱下端的箍筋加密区范围; 并且未控制柱根的箍筋最大间距 100;

新规范: 柱根系指柱底部嵌固部位的加密区范围,所以程序在判断柱根时增加对底部嵌固端的 位置判断。

4.1 版本处理:不管是否勾选"采用通用规范",程序统一对柱根的取值范围调整为结构最底层柱 跨及嵌固部位柱跨,并且执行柱根加密区箍筋最大间距为100的要求。

3、四级抗震柱的箍筋加密区直径取值的调整(通过截面尺寸大小来区分)

勾选"采用通用规范"后,施工图中对于截面尺寸大于 400 的四级抗震的框柱,柱加密区箍筋最小直径取 8;截面尺寸不大于 400 的四级抗震的框柱,柱加密区箍筋最小直径取 6。

4、剪跨比不大于2的柱箍筋间距调整——4.1不执行

新《混凝土结构通用规范》中不需要执行原混凝土规范中的一级抗震等级的要求,仅要求全高加密且间距不应大于 100。同时体积配箍率满足《抗规》6.3.9 条的要求。但在混规、抗规等修订之前的过渡期内,仍执行 2010 系列规范中相应条文。即不管是否勾选"采用通用规范",对于剪跨比不大于 2 的柱箍筋选筋结果没有影响。

3 桂箍筋加密区的体积配箍率,应按下列规定采用:1) 桂箍筋加密区的体积配箍率应符合下式要求:

 $\rho_{\rm v} \geqslant \lambda_{\rm v} f_{\rm c} / f_{\rm yv}$

式中: ρ_v —— 柱箍筋加密区的体积配箍率,一级不应小于0.8%,二级不应小于0.6%,三、 四级不应小于0.4%;计算复合螺旋箍的体积配箍率时,其非螺旋箍的箍筋体积应乘以折减系 **0.80

- f_c——混凝土轴心抗压强度设计值,强度等级低于C35时,应按C35计算;
- f_{yv}——箍筋或拉筋抗拉强度设计值;
- λν——最小配箍特征值,宜按表6.3.9采用。

表 6.3.9 柱箍筋加密区的箍筋最小配箍特征值

抗震	200 AT 11/ -P	柱轴压比														
等级	擅肋形式	≤0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.05						
	普通箍、复合箍	0.10	0.11	0.13	0.15	0.17	0.20	0. 23	—	-						
-	螺旋箍、复合或连续 复合矩形螺旋箍	0.08	0. 09	0. 11	0.13	0. 15	0.18	0.21	-	-						
	普通箍、复合箍	0.08	0.09	0.11	0.13	0.15	0.17	0. 19	0. 22	0.24						
Ξ	螺旋箍、复合或连续 复合矩形螺旋箍	0.06	0.07	0. 09	0. 11	0.13	0.15	0. 17	0. 20	0. 22						
	普通箍、复合箍	0.06	0.07	0.09	0.11	0.13	0.15	0.17	0.20	0. 22						
三、四	螺旋箍、复合或连续 复合矩形螺旋箍	0.05	0.06	0.07	0.09	0. 11	0.13	0. 15	0. 18	0. 20						

注:普通箍指单个矩形箍和单个圆形箍,复合箍指由矩形、多边形、圆形箍或拉筋组成的箍筋;复合螺旋箍指由螺旋箍与矩形、多边形、圆形箍或拉筋组成的箍筋;连续复合矩形螺旋 箍指用一根通长钢筋加工而成的箍筋。

2) 框支柱宜采用复合螺旋箍或井字复合箍,其最小配箍特征值应比表6.3.9内数值 增加0.02,且体积配箍率不应小于1.5%。

3) 剪跨比不大于2的拄宜采用复合螺旋箍或井字复合箍,其体积配箍率不应小于
 1.2%,9度一级时不应小于1.5%。

1.3.4 墙施工图的相关调整

不勾选采用通用规范:程序仍按照原高规中的要求,对于框架-剪力墙结构、板柱-剪力墙结构、 简体结构等的墙身竖向、水平分布筋的配筋率,抗震设计时均不应小于 0.25%,非抗震设计时均不 应小于 0.20%。

勾选采用通用规范:程序对于以上几类结构类型的剪力墙墙身竖向、水平分布筋的配筋率控制, 不再区分抗震及非抗震,一律按照不应小于 0.25%来控制。

原高规中的要求区分抗震、非抗震 8.2 截面设计及构造
8.2.1 框架-剪力墙结构、板柱-剪力墙结构中,剪力墙的竖向、水平分布钢筋的配筋
率, 抗震设计时均不应小于0.25%, 非抗震设计时均不应小于0.20%, 并应至少双排布
置。各排分布筋之间应设置拉筋,拉筋的直径不应小于6mm、间距不应大于600mm。
 不再区分抗震非抗震,一律 要求最小配筋率为0.25% 新版混凝土通用规范 4.4.7 混凝土房屋建筑结构中剪力墙的最小配筋率及构造 位 符合下列规定: 1 剪力墙的竖向和水平分布钢筋的配筋率,一、二、 近、 抗震等级时均不应小于 0.25%,四级时不应小于 0.20%。 2 高层房屋建筑框架-剪力墙结构、板柱-剪力墙结构、筒体结构中,剪力墙的竖向、水平向分布钢筋的配筋率均不应小于 0.25%,并应至少双排布置,各排分布钢筋之间应设置拉筋,拉筋的直径不应小于 6mm,间距不应大于 600mm。
3 房屋高度不大于 10m 且不超过三层的混凝土剪力墙结
构, 剪力墙分布钢筋的最小配筋率应允许适当降低, 但不应小
4 部分框支剪力墙结构房屋建筑中,剪力墙底部加强部位
墙体的水平和竖向分布钢筋的最小配筋率均不应小于 0.30%,
钢筋间距不应大于 200mm,钢筋直径不应小于 8mm。

1.4 基础增加对《建筑与市政工程抗震通用规范》地震组合系数联动的支持

V4.1 版本针对基础总参数页中的"采用通用规范"参数进行改进,增加地震组合分项系数的联动功能,当勾选参数选项时,重力荷载代表值及地震工况的分项系数将分别自动修改为1.3 与1.4:

轛	Ð			人	<u>д</u>	t[]			III		X			°€	0	\bigcirc	A
荷載	参数	λŢ.	自动布置	布置	自动布置	延伸加腋	布置	编辑	选当	人工	自动布置	定义	群桩	编辑	计算	配筋	ᆺ
-	设置	布置	•		•	•	-	•	前桩	布置	•	布置	-	•	•	参数	布置
荷载	参数	3	独基		地基梁		筏	板		桩基承	台			桩			砹
参数输入	-总参数																×
总参数	t			一总参	赦												
²⁰ 地条独承沉桩水材性 < 参数词目自日行行力表容。 参数量基基合映花浮料能 < 参数词	"载动动动算板,""计力布布布参弹防",计计量置表数	算参参参 地荷	计算参数(⁻ 合表	结林 基础 費」 拉梁 □ 注 : : : : : : : : : : 〔 〕 : 〕 : 〕 : 〕 : 〕	如重要性ALLAAA 重要性ALLAAA 重要性ALLAAAA 重要性ALLAAAA 设计工程定用和关键,并且在定用和关键。 可以引起多用用。 的)是在。有错的是	 by: by:	1 0 20 0 坑压桩线 0 1.0 少性比型 学性出型 学台、方式 期指的	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	* 筱板 * 拉板板面 磁) 层号:	費土重何 承担弯約 恆活高力 1	在被板布置, 但比例只暴和 K 使用 K	向独基和	山 山 柱 承 台	的计算	教 无关		
				C	ノ广义楼层	与基码	出相接的	楼层号	:								
						(楼层)	号之间词	第月 , N	鬲 开, 如]: 1,2,	最多9个	楼层)					
					读取空间	层(只读取有	i支座的	节点)									
U.S.	λ		导出]									确定			取消	

勾选"采用通用规范"弹出提示框询问是否更新荷载组合表,选"是"荷载组合表将自动更新:

\$奴锢人-忠孝奴	
总参救 地基承载力计算参救 余量自动布置参救 对处目白动布置参救 承台自动布置参救 不保计算参救 推花筏板弹性地基梁计算参救(水浮力,人防,荷载组合表 材料表 性能设计	总参数 结构重要性系数: 1 基础底面以上覆土厚度(n): 0 * 筏板覆土重在筏板布置对话框中设置,与此参数无关 覆土重度(xx/m3): 20 拉梁承担弯矩比例: 0 * 拉梁承担弯矩比例只影响独基和桩承台的计算 一 独基、承台自动布置、抗压桩数里图考虑板面恒活底水 使用说明 抗浮设计
<	抗 注
65 55003-2021、《泉瀬工名 构通用規范》GB 55008- 2021、《建筑与市政工程抗震 通用規范》GB 55002-2021。	
导入 导出	确定 取消

查看荷载组合表——基本组合,可以看到地震组合中相关分项系数已按《抗通规》执行,恒载 分项系数变为1.3,地震分项系数变为1.4:

\$ 容 数	小洋八方	八防门	可载组合	諘										
9基承载力计算参数 5.其白动东罟参教	标准组	合星	本组合	准永	丸組合			生成默认	组合	增行	ī B	行 导入	导出	
基自动布置参数	序号	分析	恒载	活载	Д, X	X , Y	震Х	震!	震Z	低水	高水		^	
《台自动布置参数 7降计算参数	14	线性	1.30	0.65			1.40		0.50	-	-			
花筏板弾性地基梁计算参数()	15	线性	1.30	0.65			-1.40		0.50	-	-			
(子), 八吻, 四我组合表]]]]	16	线性	1.30	0.65				1.40	0.50	-	-			
ENERGT	17	线性	1.30	0.65				-1.40	0.50	-	-		- 1	
	18	线性	1.30	0.65	0.30		1.40		0.50	-	-			
	19	线性	1.30	0.65		0.30		1.40	0.50	-	-			
>	20	线性	1.30	0.65	-0.30		-1.40		0.50	-	-			
±#4/2000	21	线性	1.30	0.65		-0.30		-1.40	0.50	-	-			
≥¥1KHP1	22	线性 参数	1.30	0.65	0.30		-1.40		0.50	_	-		~	
	水浮力 水浮力 历史最 (* <u>注:</u> 2	的标准 的基本 低水位 高水位	组合系 组合系 (参与约 (抗浮) <mark>网结构</mark>	数: 数: 目合)(m 日合)(m 日合)(m) 正负0)): į)(m):	1 1.35 0	5	□ ほ ☑ 底 □ В	5史最低 編板抗潟 [2] 基本 5水板荷 (不勾送	私水位参 浮验算(J 组合高) 射载所有 乾只传高	污荷载 増加抗※ 水归并 組合都 泳組合	组合 孚组合) 传递到基础)		
	人防荷	i 载参数	τ					其他						
	人防等级: 6级(核) 🗸								混凝土容重(kN/m ³) 25					
	底板等效静荷载(kPa): 40 水容重(kW/m [^] 3) 9.8													

取消勾选"采用通用规范"弹出提示框询问是否更新荷载组合表,选"是"荷载组合表将自动 更新,系数将变为默认值 1.2、1.3:

参数 其承载力计算参数	小子刀。	八四月	11戦出世 大石へ	1.70	- 49 4			出 中田 いい	140-0	103%	- 0		5	eш
基自动布置参数	「「「「「「「「「」」」	台星	- 年纪百 - 唐君	准水	人組合	E T	συν	王成款り	出声。	1111111111111111111111111111111111111		ຫາງ ຈ	F/	寺山
基自动布置参数 台白动布置参数	<u> </u>	751/T 24P-144	1世戦	活動	<u></u> XI, A	յչվ ո	<u></u> 辰 Ă	<u></u> , R ∈ I	展 4	1版小	高小			^
口口·切布亚多数 降计算参数 带带扩张并止甘源门第分并引	15	3311王	1.20	0.60			-1.30		0.50	_		-		
伐伐被羿胜地基采计具参数(1 浮力, 人防, 荷载组合表	16	线性	1.20	0.60				1.30	0.50	-	-	-		
料表	17	线性	1.20	0.60				-1.30	0.50	-	-			
BK IZ FT	18	线性	1.20	0.60	0.30		1.30		0.50	—	—			
	19	线性	1.20	0.60		0.30		1.30	0.50	_	_			
	20	线性	1.20	0.60	-0.30		-1.30		0.50	_	_			
>	21	线性	1.20	0.60		-0.30		-1.30	0.50	-	_			
#L/200	22	线性	1.20	0.60	0.30		-1.30		0.50	-	_			
gy lyd Pri	23	线性 新数	1.20	0.60		0.30		-1.30	0.50	_	_			~
	水浮力	的标准	细合系	紨:		1		٦ı	5 中最低	水位参	与荷载	组合		
	小マテノ-	的其本	·细合玄	*** ***		1.35		⊡í	気気の	验算(出	割加抗ジ	彩组合)		
	历中母	(山) <u>金</u> ~中 (任山/(合		¤∧• ⊒⇔)("`		0	-	5	☑基本	组合高)	k归并			
	の文章		(14) (14) (14) (14)		··	0	=	🗆 D)	防水板荷	ī 载所有	组合都	後递到基码	诎	
	(*注:2	1100 相	网结构	2073/00 正负0)	2/(m/.	Ľ			(不勾送	兴传品	水组合)		
	人防荷	i载参数						其他						
	人防等	報:			6级	(核)	\sim	混凝:	上容重(kN/m^3))	25		
	底板等	較静荷	菄(kP®):	40			水容重	€(kN/m	^3)		9.8		

同样的,勾选或取消勾选该参数时,荷载组合参数页中的相关系数也将自动联动修改:

1.5 基础增加对《混凝土结构通用规范》的支持

根据《混凝土结构通用规范》(GB55008-2021) 2.0.2 条的规定,程序对基础构件的默认混凝土 等级进行调整,将原先低于 C25 的混凝土等级更改为 C25。

1	素混凝	土结构核	的混為	疑土强度等	等级不应伯	€于 C20;	钢
筋混凝	土结构树	」件的混得	疑土强度	等级不应	氏于 C25;	预应力清	凝
土楼板	结构的混	凝土强度	 奪等级不	应低于C3	0,其他預	顶应力混凝	土
结构构	件的混泼	土强度	等级不应	5低于 C40	;钢-混凝	土组合结	构
构件的	混凝土强	康等级	不应低于	C30.			

材料表	材料表														
构件类型	强度级别	驯	钢筋级别	箍筋级别											
独基	C25		HRB400	—											
承台	C30		HRB400	HRB400											
承台桩	C30		HRB400	HRB400											
地基梁	C25		HRB400	HRB400											
筏板(C30		HRB400	_											
板桩(C30		HRB400	HRB400											
拉梁	C25		HRB400	HPB300											
条基	C25		HRB400	HRB400											

1.6 组合梁剪跨区划分增加对《钢结构设计标准》的支持

完全抗剪连接组合梁剪跨区划分按照《钢结构设计标准》第14.3.4 图连续梁剪跨区划分图进行 剪跨区输出。之前程序剪跨区划分执行《钢结构设计规范》11.3.4 图,对比如下图。

此条改进影响剪跨区内钢梁与混凝土翼板交界面的纵向剪力和组合梁纵向受剪界面 a-a、b-b 受 剪承载力验算。

部分抗剪连接组合梁按钢标要求剪跨区段仍然按正、负弯矩作用区段分别取值。

14.3.4 当采用柔性抗剪连接件时,抗剪连接件的计算应以弯矩 11.3.4 抗剪连接件的计算,应以弯矩绝对值最大点及零弯矩点 绝对值最大点及支座为界限,划分为若干个区段(图14.3.4),为界限,划分为若干个剪跨区(图11.3.4),逐段进行。每个剪跨 逐段进行布置。每个剪跨区段内钢梁与混凝土翼板交界面的纵向 区段内钢梁与混凝土翼板交界面的纵向剪力 V,按下列方法确定: 剪力V。应按下列公式确定: 4 + M + M M^* M^{+} *m* 1 m₂ m₂ m 图 14.3.4 连续梁剪跨区划分图 图 11.3.4 连续梁剪跨区划分图 《钢结构设计标准》2017 《钢结构设计规范》2003

第二章 建模平台

2.1 工作树-设计信息项中增加配筋率显示

工作树-设计信息-计算配筋结果项中增加配筋率显示,如下图所示,双击某层的配筋率,对应层模型 中自动显示配筋率简图,如下图所示:

该功能与配筋显示类似,需要在设计结果中导出配筋率简图的 dwy 图形,建模中才能正常显示 各层对应的配筋率。

根据配筋率结果修改模型后重新计算,需要再次将重新计算后的配筋、配筋率简图导出,建模 中执行取消衬图,再次双击工作树-配筋、配筋率对应层,可更新显示重新计算后的配筋、配筋率结 果。

2.2 衬图对齐中增加框选功能

执行平面对齐-衬图对齐,选择对齐的衬图图素后可以框选需要对齐的构件(梁、柱、墙),如 下图所示:

2.3 增加下弦垂直封口布置网架方式

参数化布置网架-正放四角锥网架类型中增加了【下轩支撑垂直封口】选项,如下图所示:

勾选【下轩支撑垂直封口】参数后生成的正放四角锥网架如下图所示:

说明:目前只有正放四角锥网架支撑该功能。

2.4 执行文字放大缩小操作的加速

4.0版本增加了执行文字放大缩小命令后,荷载文字与荷载线条同比例放大缩小功能,导致大规模大平面工程执行文字放大缩小命令后效率降低。

4.1版本对文字放大缩小命令进行了加速,在只有文字没有线条的状态(如截面显示),执行文字放大缩小命令不再调用线条相关的数据刷新。

2.5 增加对不合理截面尺寸定义的过滤功能

 1、增加对截面尺寸均为0的截面定义的过滤功能 如矩形梁、柱、撑长宽均为0、悬挑板外挑长度为0等的自动过滤功能。 截面定义中输入参数为0,弹出错误提示如下图所示:

2、增加对定义空型钢截面的保护功能

老版本定义型钢截面后不选择型钢规格或直接点取消(右上角点×)确定后还是生成了一个空的型钢定义导致出错,如下图所示:

添加	修改	删除 显示	清理	住布置参数 ×				
1 1	顶底	当前层 去重	着色	1044/005/01			一没有选	择刑钢规格。
序号	形状	参数		治捆捅心(mm) 0				上而逃
1	矩形	500*500		生成一个空值型钢			(点~或	
2	矩形	450*450		定义导致出错崩溃				$\overline{}$
3	矩形	400*600						
4	圆形	750*0				X	标准型钢及其组合	×
5	圆形	250*0		名称	内容		选择型钢的形式:	选择型钢的规格:
6	矩形	400*400		日柱参数	134	_	热轧等边角钢 GB/T706-2016	L20x3
¹ 7	型钢	/		截面类型	26 型钢		热轧音通工字码 GB/T706-2016	L25x3
			Micro	osoft Visual C++ Runtime Library		×	热轧轻型	L25x4 L30x3
				·····,			- 热轧轻型槽钢 IB164-1963 欧洲标准贯翼缓H型钢	L30x4 L36x3
				•			日本标准宽翼级19到的 学家经常繁盛。19月13	L36x4 L36x5
				Assertion failed!			国标热轧理钢 GB/T11263-2017	L40x3
				Program: C:\Program Files\盈建科建第	陆构设计软件400官网1106版		王等边角钢长边[组合	L40x5
				\YJK_SSCS.dll				L45x3 L45x4
				File: SSCS_Object.cpp				L45x5
				Line: 21107	1055C5		百四億円113日 発型値的113日	L50x3
								L50x4 L50x5
		B		Expression:			国标制分T型钢 GB/T11263-2017 不等访角钢长访门组合	L50x6 L56x3
				Annotation: 存在输入截面的KIND为零			大等近角钢短近门组合	L56x4
				Oh! Sorry! This is a BUG. Please con	tact us! We will DEBUG it.		冷雪长方形钢管 JG/T178-2005	L56x6
							冷弯矩形空心型钢 GB/T6728-2017 冷弯矩形空心型钢 GB/T6728-2017	L56x7 L56x8
				For information on how your program	m can cause an assertion		冷弯圆形空心型钢 GB/T6728-2017	L60x5
								L60x7
				(Press Retry to debug the application	- JIT must be enabled)			白史义
								B/E/
							所选型钢规格:L20x3 (B=20 T=3.0)	
				中止(A)	重试(R) 忽略(I)		型钢库查询 确认	取消
口增加	类型到当	前位置			确完(Y) 取消(C)		
					AVAL (C)	·		

2.6 钢筋强度等级 HTRB630 名称改为 T63/E/G

为了适应新规范标准,在构件布置、材料修改中已将 HTRB630 名称改为 T63/E/G,如下图所示:

本层信息及各层信息及前处理-楼层信息中均将钢筋强度等级 HTRB630 名称用 T63/E/G 替换, 如下图所示:

标准	保护	三厚度				ī	主筋	级别						箍筋级别	J			墙 分布筋级别		
层号	梁	板	墙	柱		梁		墙		板		柱		梁		边缘构件		水平		竖向
1	20	15	15	T63/E/G	•	HRB335	-	HRB335	-	HRB400	•	HRB335	•	HRB335	•	HPB300	•	HRB335	•	HRB33
2	20	15	15	T63/E/G	•	HRB335	•	HRB335	-	HRB400	-	HRB335	-	HRB335	-	HPB300	-	HRB335	•	HRB33
3	20	15	15	T63/E/G	•	HRB335	-	HRB335	•	HRB400	•	HRB335	-	HRB335	-	HPB300	•	HRB335	•	HRB33
4	20	15	15	T63/E/G	•	HRB335	~	HRB335	•	HRB400	-	HRB335	-	HRB335	-	HPB300	•	HRB335	•	HRB33
						冷轧带肋5 冷轧带肋5 HPB235 HTRB600 T63/E/G CRB600H HRB635	50													
-																				

建模中修改钢筋级别为 T63/E/G, 前处理楼层信息表中自动读取修改后的材料:

模层信息	102												1 8	喝信息									×
15.8	2.00	ġ			白筋吸引			推制级	81	11	份布额级则	П	材料	1号 混凝土	上构件	抗震等级 征	物件抗震等	级 钢筋棒	号页	R FRIEddarf I F	系數 整体控制	他項	
199	板	塘	桂	2	堰	板	桂	*	边缘构件	水平	医肉			-			1.000	1.000		1	1塔		
1	15	15	HRB33	HRB335	· HRB335	+ HRB400	· HRB335	· HRB335	· HPB300	· HRB335	• HRB335			柱主筋	_	梁主舫	増主筋	往館想	6	梁推筋	边爆物性	推訪	墙水平筋
2	15	15	HRR33	+ HRB335	· HR8335	- HRR400	+ HRR335	- HRR335	- HPR300	* HRR335	+ HR8335		1屆	HR8335	-	HR8335	HRB335	HRB3	35 -	HRB335	HP8300	-	HRB335
-	15	15	T62/E/	· 162/5/0	* T62/6/0	-		-	· H08200	-	· HP2225		2层	HR8335	-	HRB335	HRB335	HRB3	35 .*	HRB335	HPB300	•	HRB335
Ľ	1.0	10	1007670	* uppoor	× uppaas	* UDD 400	* unnaar	* unnaar	* unpago	* unnaas	* unnaar 1		3届	T63/E/G	-	T63/E/G	T63/E/G	HRB3	35 💻	HRB335	НРВ300	•	HRB335
4	15	15	PIRD 33	and HKB330	HKB335	and PIRD400	HRB335	and MKB335	and HPB300	HRB335	and HKB335 =		4层	T63/E/G	•	T63/E/G	T63/E/G	HRB3	35 -	HRB335	· HP8300	•	HRB335
			建模楼	层信息中	修改标准	挂层钢筋等	级						5层	T63/E/G	-	T63/E/G	163/E/G	HRB3	35 -	HRB335	- HP8300	•	HRB335
			-									11	6层	HRB335	-	HR8335	HRB335	HRB3	35 -	HRB335	HP8300	•	HRB335
												H	7层	HRB335	•	HR8335	HRB335	HRB3	15 -	HRB335	- HP8300	•	HRB335
4				l								>	第 :	3标准局	罢 死	j应 3、4	、5自	然层		ļ			3
										确定	(Y) 取消(c)		±: 4	4表支持多说	各總改		- M		R:A				

2.7 钢梁/钢柱/钢撑截面(工字钢)显示上下翼缘宽度

2.8 型钢库截面增加马钢热轧 H 型钢库

柱、梁、支撑构件布置中,截面类型 26 号标准型钢库增加了"马钢热轧 H 型钢 2021",同时 也支持自定义需要的马钢标准型钢截面尺寸。

马钢自定义截面,需要按库中对应截面不改变 Hw、bf 尺寸,修改 H、B 程序自动联动 tf、tw, 或修改 tf、tw 程序自动联动修改 H、B 尺寸,按照这种自定义截面修改尺寸原则,厂家即可生产出 对应的标准 H 型钢截面尺寸。

布置国标热轧 H 型钢和马钢热轧 H 型钢后,进行修改截面时,可以通过优选截面输入截面的高度和宽度可以快速找到输入尺寸的近似数据的马钢或国标热轧 H 型钢。

2.9 导入 dwg 功能中增加右侧菜单

导入 dwg 功能模块中增加了与协同工具一致的右侧菜单,可以自动进行图层分析、钢筋识别等 操作,如下图所示:

2.10 快速导入 dwg 新增功能

1、新增网格、填充墙的识别及布置功能

转网格:可选择衬图中的图素生成网格,并自动生成网点;

转填充墙:转填充墙规则与转墙类似,生成的填充墙为无网格填充墙,计算不考虑填充墙刚度; 填充墙布置方式:选择布置方式,可以直接拾取衬图中的标注文字进行构件的布置,也可以手工填 入宽度、高度参数值进行布置,如下图所示:

构件类型
◉梁 〇柱 〇墙
○网格 ○填充墙
截面尺寸 偏心
类型: 矩形 ~
- 尺寸 (单位:mm)
拾取尺寸
宽度: 400
高度: 400
操作方式
○转图 ⑧布置
其它参数 关闭

说明:布置方式中网格、填充墙均只支持两点方式。

2、布置方式中增加偏心布置参数

快速导入 dwg 布置方式中新增【偏心】项,可以布置偏心梁、柱、墙及填充墙,如下图所示:+

构件类型
◉梁 〇柱 〇墙
○网格 ○填充墙
截面尺寸 偏心
- 偏心距离(单位:mm) —
偏轴距离
200
操作方式
○转图 ●布置
其它参数 关闭

2.11 增加相对坐标输入起始参照点功能

草图设置-选项-用户系统设置中新增【相对坐标输入的起始参照点】设置项,如下图所示:

早回设置	※ 透明 ※
捕捉和栅格 极轴追踪 对象捕捉 三维对象捕捉	显示 打开和保存 打印 用户系统设置 绘制 三维模型 选择集
□ 自用補提(r9)(s) □ 自用補格(r7)(6) 捕捉间距 捕捉 X 轴间距(?): 50 捕捉 X 轴间距(0): 50 □ 使用型示点栅格: □ 数编距差(0) □ 数编距差(0) □ 数编距差(0) □ 動格 ● 樹格補提(x) □ 動格 ○ 极轴捕捉(0) □ 適循動态vcs(v)	単击税标右纏 □打开undo,Redo ④功能罐 □打开北师管理器 □结束命令 □重复上一条命令 虚转功能
送项(T) 恢夏默认 确定 取消 帮助(N)	相对坐标输入的起始参照点 ○坐标系原点 ◎ 捕捉标记点 确定 取消 应用

默认设置为坐标系原点,在画直线、节点、绘梁线等操作的起始点位置选择捕捉点后输入坐标, 坐标值为相对于原点的值。

若需要相对于捕捉点进行定位绘图,可以将设置项改为【捕捉标记点】完成后,输入的坐标为 相对捕捉点的相对坐标。

2.12 增加基础构件转 IFC 功能

导入 IFC 增加对基础模型的支持,在楼层组装模块有两个 IFC 接口命令,分别为【导出 IFC】、【导

出基础 IFC】,如下图所示:

执行【导出 IFC】命令,弹出是否同时导出基础模型对话框,如下图所示:

选【是】, 弹出 IFC 工程文件存储目录, 如下图所示, 选择 IFC 目录并输入 IFC 上部模型文件名 后点保存, 完成后在工程目录下生成两个 IFC 文件, 分别为上部模型的 IFC 文件及基础模型的 IFC 文件。

超限信息	工程 対 対比 结	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	工程量 统计	使型链接	● 隠藏 链接模型	一次の目前にある。	後 导出IFC	导出基础IFC				
	工程	对比	工程量		模型链接			出IFC				
另存为												×
$\leftarrow \rightarrow$	× 🛧 📙	< IFC测	试例题 >	75637-地建	基梁-梁元法	t > 75637	-地基梁-梁	元法410 >	~	∂ 搜索"75637-5	地基梁-梁元法4	Q
组织 ▼	新建文	牛夹										?
之 🗟 日 🚽	な档 「載 肝发专用 (192 話乐	2.11		_{异风和木雕} 江图 课	<u>,</u>		自克 F(加生成文 こ文件名		上部 I I f c		~
- 4			施工图	设置			2022/	1/7 10:34	又件夹			
- - - -	弦盘 (D:)		梁元法	.ifc			2022/	1/18 10:12	IFC File	32,832 KB		
)J	小式 (E:)	✓	 梁元法 	jc.ifc			2022/	1/18 10:12	IFC File	2,266 KB		~
	又1+音(IN):	≈)6/±c							<u> </u>			
₽ へ 隐藏5	采存类型(T): 文件夹	IFC导出文	(件 Files ('	'.ifc)			输入 文件2	上部IFC 及路径		保存(S)	取消	~

执行【导出 IFC】命令生成的上部模型与基础相连的竖向构件自动探深到基础顶,下图所示为上部模型与基础模型同时导出 IFC 生成的模型效果:

执行【导出基础 IFC】命令,则单独生成基础模型的 IFC 文件,上部模型不做处理。 说明:

1、yjk 基础构件: 筏板、承台、地基梁、桩、独基、筏板加厚区及减薄区均可以转 IFC;

2、执行命令,可以同时生成上部 IFC 模型数据及基础模型数据两个.ifc 文件,其中上部模型考虑了竖 向构件的探深;

3、上部模型的竖向构件自动探深目前仅支持1层接基础的探深;

4、电梯井、集水坑、后浇带、砌体条基目前不支持导出 IFC。

第三章 上部结构计算

3.1 增加"时域显式随机模拟法"算法

根据广东高规中的要求,增加"时域显式随机模拟法"算法。该算法与弹性时程类似, 是对振型分解反应谱法的补充计算。软件依据规程附录 C 提供的方法进行计算,在 wzq 中 输出结果,每一层的剪力结果与振型分解反应谱法的剪力结果进行相比,比值大于1则用该 比值对本层的地震作用进行放大,小于1则不调整。

需注意,该算法只支持广东高规(2021)。为保证模拟所得的平均反应谱与规范反应谱 完全等价,生成地震波的时间步长应取为 0.01s。

ゆき (1 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
科忌体信息	时域显式随机模拟	法				
	行时域显式随机模	拟法				
。 在 生成地	震波数量 M	500				
地震波	持续时间 Td(s)	30				
时间步	长(s)	0.01				
均匀调	制函数参数					
ta(s)		0.5				
+h(s)		5.5				
		0.45				
c		0.45				
频率划	分段数 N	1500				
截新最·	大坜室 fmax(Hz)	30				
截新品,	し版案 fmin(Hz)	0.05				
Educitation	1.9%+ 1	0.05				
4131Q1	立诸与规氾反应诸日	的相对合差	0.05			
启						
兄组合						
日 系数 表 义工况组合 固						
数						
湖合						
时译名式旗	机模拟法:					
且合 时城显式随 时城显式随时	机模拟法: 1.模拟法是一种针杂	计大型复杂结构	的高效非平稳限	植机振动分析		法利用结构
1合 日 1 1 長記 ス 随 1 3 加 小 中心 5 3 1 3 加 小 中心 5 3 1 5 一 0 1 5 7 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	机模拟法 : 机模拟法是一种针穴 线型式表达式的阵线	· 打大型夏杂结# 注列式优势,避 → 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	的高效非平稳限 给大量的时程和	• • • • • • • • • • • • •	方法。优势:算 提高计算效率并	(法利用结构 ;达到可靠精

3.2 特殊构件定义中对梁的刚度系数、连梁刚度折减系数菜单细分

在计算参数中可以针对竖向荷载、风荷载及地震作用分别指定梁的刚度系数,针对风荷载及地震作用分别指定连梁刚度折减系数。新版本在特殊梁定义中将原先的刚度系数细分为 "刚度系数"、"刚度系数(风)"及"刚度系数(震)",分别对应竖向荷载、风荷载及地震 作用;在特殊墙定义中将原先的连梁折减细分为"连梁折减(震)"及"连梁折减(风)", 分别对应地震作用及风荷载。

对于杆连梁,点"刚度系数"菜单时将不显示其刚度,程序内部隐含为1.0,且无法被 修改。其连梁折减系数在"刚度系数(震)"中显示。

Ł	3		0				SG		γ_0			÷	
特殊	梁 ·	特殊柱 ▼	特殊支持	摩 特殊墙	板属性	节点属性	抗震 等级	材料 强度	重要性 系数	性能 设计	隔震 设计	人防 构件	超配 系数
•	不识	駧幅梁		连梁	• []	式刚梁	。 — — —	较接	• 扭矩	手減	• 0	加度系数	ζ
•	北京自己	画转换 加托墙转	。 安 。	交义配肋 对角暗撑	• 耗 • 売	能業 元梁	• 內遍 • 半铰	報知安 好安	· 调幅 · 滑动	i系数)支座	• P	则度系数]]度系数	(()XL) ((震)
•	剕	[墙转换		对角斜筋			• 两道	固接			-		 关(F
\sim	_							_				4	
	J			• so	s 🖌	γ_0] 🛱		Ś		
特殊	洙墙 ▼	板属的	主 节点	·属性抗	震材料 级强	斗重要性 第二系数	: 性能 设计	₩ 同時 し し	夏 人防 ト 构件	超配 系数	删除	€ 复制	1 3
	地	下外墙		连梁分銷	ē •	连梁折减	(震)	。 短	腋剪力増	ł	• NJ	度系数	
	临	空墙		交叉配筋	5.	连梁折减	(凤)	• 33	肢墙		。面	外设计	
	临	空墙荷翻	裁 。	对角暗摸	î •	竖向配筋	荻	• i	梁钢板		▫ 徐	变折减	系数
				对角斜筋	j.	水平配筋	壑	• 防	屈曲钢板	墙			
						关闭	8						

3.3 高级选项中增加 "X、Y 方向基本周期对应的振型号"

新、旧广东高规中规定,振型分解反应谱法算出来的基底剪力需要和 0.85 倍底部剪力 法的基底剪力去比较,而底部剪力法的计算依赖 X 和 Y 方向的基本周期。软件会默认对两个 方向的基本周期进行判断,判断的依据是各自方向的质量参与系数最大的振型的周期即为基 本周期,但当结构比较复杂时,软件依据本规则判断的也许不合适。故新增该参数,默认值 为 0,此时由软件自动判断,如果用户认为不合适,则可以自行填入合适的振型号。

JKCAD-参数输入-结构总体信	息	控制参数	
结构这体信息 计 其论时信息 计 算论时信息 计资源管理 二阶次态 分析式常物就 方有病信息 地震情況 建設定規模 地震情況 自主公長の系統 建設式規構 地震音 市 市 日言公長 市 日言公長 日言公長 日言 日言 日言 日言 日常 日言 日常 日常 日 日 日 日 日 日 日 日 日 日 日 日 日	结构总体信息 结构体系 櫃野结 结构林科 钢筋混 结构所在地区 全国 地下室层数 嵌固端所在层号(层顶嵌团) 与基础相连构件最大底标高 裙房层数 转换层所在层号 加强层所在层号 加强层所在层号 加强层所在层号 加强层所在层号 加强层所在层号	通用 染 柱 墙 整体指标 其它 计算相关 前处理 前处理(续) 34 空心板有限元法计算选项 过考虑深变形 过考虑深变形 过考虑深变形 过考虑深变形 过考虑深变形 过考虑观察的构件问度 问格划分尺寸(a) 0.5 计算提型 ③ 例度折减 ○ 例度折减 ○ 考虑的深致力折减 广东高规 双方向基本周期对应的振型号 0 *** ***	1
导入导出	恢复默认高级选项	(1998) (1997) (

3.4 高级选项中增加"判断高规 8.1.7 条单片墙不超过 30%的限制"

高规 8.1.7 条规定单片墙的剪力不应超过结构底部剪力的 30%。之前软件在任意情况下

 							THE REPORT OF A DESCRIPTION OF A DESCRIP		I S S C THE THE	
二時效应 分析 玩音 寫参救 內 两 海 等效 對露債寬息 動 地震行風想 電影 一致 力量 一致 一 一致 一 一致 一 一 一 一 一 一 一 一 一 一 一 一 一	结构体系	架结构	2 技《高规以补] 墙柱技型] 墙挂技型] 对称达型 词 大妙墙面远规 [2] 为地断远边派升 创 新能 空牆 曲 之 和 範 定 一 和 题 》 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	99.1.11-1 9. 國都 前時一個 時代勇士 時代 時代 時代 時代 時代 時代 時代 時代 時代 時代 時代 時代 時代	空奈调感出 間方の時 第方四・ 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、	 約益抗震等级 公式 辺向分布筋 切注全等地计算 組合 ① ① ③ ③ ③ ○ ○<td></td><td>配板 新算社 编辑 化化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合</td><td>框先单行 慶 不 超 最 可 和 新 和 封 和 封 和 封 和 封 和 封 和 封 和 封 和 和 和 和</td><td> 求電離 000 値 す 为 12000 2300 1200 10</td>		配板 新算社 编辑 化化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合	框先单行 慶 不 超 最 可 和 新 和 封 和 封 和 封 和 封 和 封 和 封 和 封 和 和 和 和	 求電離 000 値 す 为 12000 2300 1200 10

都会进行该条的判断。现在给出选项供用户选择,当认为不需要进行该条的验算时,可以取消勾选。该选项默认为勾选。

3.5 高级选项中增加"输出边缘构件纵筋大于 5%时的超限信息"

之前软件根据框架柱抗震时的最大配筋率不应大于 5%来对边缘构件纵筋进行超限判断。 现在给出选项供用户选择,当认为不需要进行该条的验算时,可以取消勾选。该选项默认为 勾选。

3.6 高级选项中增加"错层梁截面连接刚性杆自动铰接"

对于次梁搭在主梁上的错层梁,程序自动生成刚性杆,刚性杆之前是两端刚接,刚接的 刚性杆会导致主梁的内力异常。新版本增加该参数,默认为勾选,即默认将刚性杆两端改为

铰接,优化了主梁的内力,使之更合理。但修改后会影响到次梁的内力,刚性杆所连接的次梁端部弯矩可能会变为0,且个别情况下会造成局部振动。用户可以根据需要选择是否勾选。

控制参	数						X
通用	梁	柱	墙	整体指标	其它	计算相关 前处理 前处理	!(续)
移示	h荷载					施工图	
124	のらまえ なわ荷裁与!	日左荷を	t白动组合	2			身坚向筋两筋索
	动荷载码	制控单机	動道计質	s.			
	Prailton		(DU/2 PI 34	5		「小有版 ~」	
태교	小別未 社公設宣用	≆(_)		3.000		穿入连续墙的梁段最大长度	1200.000
	柱方视高级	之(1117 计转去和约	使释		-	1%1 ¥	
版比	例(0-100)	94-2-402-1 96	l21⊂4 +	99		1支172	
高級	动计算参数				_	楼梯板网格细分尺度(m)	0.500
位移	存储的0值	阈值		0.000001			
非线	性收敛误差	É		0.001		组合梁	
☑道	[接单元考]	虑剪切位	〕置				\$P\$\$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$
一其他	b					──────────────────────────────────────	a梁 板目重
	280混凝土的	弹模取值	自按线性外	·推	_		
中梁	/边梁与板	最大错题	丟值	50.000			
多塔	围区外扩			100			
填充	墙刚度系数	汝		1.000			
☑膅	軒自动设	置铰接					
	出PKPM模	型强制修	使用YJK中学	黎刚度放大系	数		
一空心	版刚度折	瑊方式					
Oŧ	安肋梁中点		◉ 按肋梁	质心			
☑粱	[间冗余节]	点不凝聚	調量				
☑错	[[[梁截面]	车接刚的	4.杆自动铰	接			
-							
	ID 店量	-	_				
□ 支座 □ 柱ID							
	算长度系数						
	10						
 ✓ 杆端 □ 连接 	約束						
	板主从关系 主从关系					T	
	問☆ 板割分 01.荷薪						
□板面 □析件	荷载 荷载						
	<u>=</u>	-				\diamond	
49.7	4- **	_					
SQ.A.PEP	加小 高売並不						

3.7 高级选项中增加"按柱配筋的墙单侧配筋面积"及"非按柱配筋的墙单侧配 筋面积"

之前版本,在高级选项中有"对称配筋下暗柱配筋为0反算竖向分布筋"选项,该选项 勾选时,软件将暗柱的钢筋指定为0,完全由分布钢筋承担轴力和弯矩。

新版本为该参数增加两个可以进一步设置的参数,使之应用范围更广。两个参数分别为 "按柱配筋的墙单侧配筋面积"及"非按柱配筋的墙单侧配筋面积"。

对于较短墙肢,根据两端力臂得到的端部钢筋面积较大,但实际布置钢筋时是按照沿墙 身均布方式来布置,这样导致实际情况中端部的实配钢筋少于计算配筋,偏不安全。新增的 这两个参数分别针对按柱配筋墙和非按柱配筋墙,两种墙的区别在于高厚比是否小于4,小 于等于4的墙为按柱配筋墙,大于4的墙为非按柱配筋墙。用户根据实际情况预先指定端部 的实配钢筋面积,然后软件根据该面积去反算墙身的分布钢筋。

需注意,该参数不能应用于组合墙。

3.8 前处理"荷载校核"-"平面导荷"增加"房间属性"选项

软件在前处理"荷载校核"-"平面导荷"增加"房间属性"选项,以在图面上显示建 模中指定的。

3.9 wzq 中增加输出强制刚性楼板模型的质量参与系数

当计算参数中勾选"整体指标计算采用强刚,其他计算非强刚"时,软件在 wzq 中同时 输出强刚模型及非强刚模型的质量参与系数。

(Z向扭转	病量系数只在强制刚性板下;	有意义,对于非强制刚性板下	的计算结果仅供参考)	
振型号	X向平动质量系数%(sum)	Y向平动质量系数%(sum)	Z向扭转质量系数%(sum)(强制刚性楼板模型)	
1	0.00(0.00)	84.13(84.13)	0.00(0.00)	
2	84.29(84.29)	0.00(84.13)	0.00(0.00)	
3	0.00(84.29)	0.00(84.13)	84.24(84.24)	
4	0.00(84.29)	12.35(96.48)	0.00(84.24)	
5	12.24(96.54)	0.00(96.48)	0.00(84.24)	
× 向平动]振型参与质量系数总计:	96.54%		
Y向平动]振型参与质量系数总计:	96.48%		
振型号	X向平动质量系数%(sum)	Y向平动质量系数%(sum)	Z向扭转质量系数%(sum)	
1	0.00(0.00)	84.14(84.14)	0.00(0.00)	
2	84.30(84.30)	0.00(84.14)	0.00(0.00)	
3	0.00(84.30)	0.00(84.14)	0.00(0.00)	
4	0.00(84.30)	12.35(96.49)	0.00(0.00)	
5	12.24(96.54)	0.00(96.49)	0.00(0.00)	
X 向平动]振型参与质量系数总计:	96.54%		
Y向平动]振型参与质量系数总计:	96.49%		
第1扭转	問期(0.4842)/第1平动周期	(0.5674) = 0.85		

第四章 施工图

4.1. 楼板施工图中增加负筋最小长度控制参数

在楼板绘图参数中增加"负筋最小长度"控制参数,提供用户对支座负筋的最小长度进行 交互设置。

¢°	- 平面图比例 平面图绘图比例	100	──简化标注 ── ── 简化标注 ── ── 钢筋采用	简化标注 定义简化标注
配筋计算参数	负筋长度 长度: ●1/4跨长	○1/3跨长	〇程序内定	○用户指定 1/5 跨长
钢筋级配库	两边长度取大 □负筋长度取值采用 。 负筋自动拉通距离 负筋长度自动归并	 ● 是 争跨长度 200 距离 100 	0香	

4.2 提升梁施工图的文字避让效率

解决了梁施工图中勾选考虑文字避让时,绘图速度慢或者卡顿的问题。

4.3 梁施工图中增加对构造柱属性的判断

砌体结构中在建模时按照构造柱布置,此时与构造柱相连的梁应该按照 L 来进行设计,而不是 KL。

4.4 调整箍筋肢距的计算方式

在原程序中,箍筋选筋时箍筋肢距的控制方式在选筋和校审时使用的方式不同,选筋时 使用的是净距控制,校审时使用的是中心距控制的,导致施工图本身的选筋在校审时出现箍 筋肢距不满足的情况。

4.1 版本中在选筋及校审时均按照《混规》的 11.3.8 条的要求,按照箍筋的中心距进 行箍筋肢距的控制。

11.3.8 梁箍筋加密区长度内的箍筋肢距:一级抗震等级,不宜大于200mm和20倍箍筋直径的较大值;二、三级抗震等级,不宜大于250mm和20倍箍筋直径的较大值;各抗震等级下,均不宜大于300mm。

4.5 调整连续梁 Hw 的确定方式

旧版程序处理方式:梁构造腰筋选筋时,hw 的取值取沿梁跨方向每一跨的<u>第一段</u>作为 计算依据。

4.1 版本处理方式:梁构造腰筋选筋时,hw的取值取沿梁跨方向每一跨的<u>各段大值</u>作为 计算依据。

4.6 取消对梁纵筋间距的容差控制

在原程序中对梁纵筋进行排布时,考虑全截面宽度有 5mm 的容差,导致用户在复核实际纵筋间距时不满足规范的相关要求。4.1 版本中取消截面宽度的容差控制,使纵筋间距完 全按照规范上要求的间距执行。

- 9.2.1 梁的纵向受力钢筋应符合下列规定:
 1 伸入梁支座范围内的钢筋不应少于2根。
 2 梁高不小于300mm时,钢筋直径不应小于10mm;梁高小于300mm时,钢筋直径不应小于8mm。
 3 梁上部钢筋水平方向的净间距不应小于30mm和1.5d;梁下部钢筋水平方向的净间距不应小于25mm和d。当下部钢筋多于2层时,2层以上钢筋水平方向的中距应比下面2层的中距增大一倍;各层钢筋之间的净间距不应小于25mm和d,d为钢筋的最大直径。
 4 在梁的配筋密集区域宜采用并筋的配筋形式。
- 4.7 增加梁截面原位标注的功能

绘图参数中增加"梁截面均原位标注且标注在第一排的位置"控制参数,勾选该参数后 详细集中标注中不再标注梁截面,将每跨梁的梁截面均标注在原位标注上(详细标注、简化 标注的梁均标注)。

4.8 增加梁跨中底筋标注位置的控制参数

	₽ \$ Search	
所有设置	参数	用户设置
\	详细集中标注缺省离开梁线的距离(n倍字高)	2.5
	简略集中标注缺省离开梁线的距离(n倍字高)	2.5
绘图参数	上部原位标注缺省距离梁线的距离(n倍字高)	0.2
2	下部原位标注缺省距离梁线的距离(n倍字高)	0.2
9 V	集中标注引线起始点位置	◎梁中心线 ○ 梁边线
梁名称前缀	梁各跨底筋相同时才标注在集中标注中	
<u>91</u>	列表注写的梁简略标注	
IY	考虑钢筋标注文字避让	\checkmark

绘图参数中增加"梁各跨底筋相同时才标注在集中标注中"的控制参数,用来控制梁各跨底筋不完全相同时是否在集中标注中标注。若勾选,只有在连续梁各跨底筋完全相同时才 在集中标注中标注,如果不完全相同则各跨底筋采用原位标注的形式;不勾选时,则选取配 筋相同的多数跨的底筋在集中标注中表达,其他不同跨原位标注。

4.9 墙柱表绘制时增加构件个数的显示

在墙施工图中相关构件的表格绘制对话框中增加构件个数的显示,如下图所示:

4.10 墙施工图中增加箍筋直径的级差控制参数

边缘构件箍筋允许两种直径时,增加直径的级差控制参数。原程序中当箍筋选用两种直径时默认只减小一级,4.1版本允许两种直径的级差大于等于2,解决了箍筋经济性的问题。

	E	這在选筋参数	
		优选钢筋放大系数上限	1.2
週用参数		按柱配筋墙柱的纵筋优先布置到两端	
		边缘构件箍筋允许两种直径	○ 不考虑两种直径 ○ 不超过2倍级差 ● 不限制级差(在钢筋库即可)
墙柱选筋参数			◎ 不考虑地上一层下探取大

4.11 墙柱纵筋选筋采用两种直径时放开最小直径的控制参数

	Search ≸	٩
所有设置	· · · · · · · · · · · · · · · · · · ·	用户设置
×	约束边缘构件纵筋允许两种直径	▼ ▲
	约束边缘构件纵筋最大间距	不考虑两种直径
通用参数	约束边缘构件纵筋优选间距	不小于构造直径且不超过2倍级差
2	约束边缘构件纵筋最小间距	不小士科造員役但不限制級差(任钢筋库即可) 不招討2倍犯差
2	约束边缘构件箍筋最大肢距	不限制级差(在钢筋库即可)
墙柱选筋参数	约束边缘构件箍筋优选间距序列	200,150,100
911	约束边缘构件箍筋优选直径序列	10,8,12,14
IYS	约束边缘构件墙厚拉筋根数	4,300,400,550,600,0,1,2,3
墙身选筋参数	约束边缘构件箍筋样式	○隔—拉—拉筋 ◉隔—拉—箍筋 ○ 逐根拉筋 ○ 逐根箍筋
	约束边缘构件箍筋计入墙水平分布筋	
~	构造边缘构件纵筋计算值放大系数	1
墙梁选筋参数	构造边缘构件纵筋优选直径序列	20,16,22,25,14,18,12
	构造边缘构件纵筋允许两种直径	不考虑两种直径 🔹 🔹
J.	构造边缘构件纵筋最大间距	300
构件归并参数	构造边缘构件纵筋优选间距	200
	构造边缘构件纵筋最小间距	55
2003	构造边缘构件箍筋最大肢距	300

不考虑两种直径:即边缘构件纵筋统一采用一种直径。

不小于构造直径且不超过 2 倍级差: 边缘构件纵筋允许出现两种不同直径,自动选筋时会尝试减小部分纵筋的直径以降低总的钢筋使用量。降低直径的钢筋主要为沿墙肢长度布置的分布筋,端头及墙肢交叉处的固定钢筋不会降低直径。两种直径钢筋的具体分布位置请参见图集 12G101-4 的各种构造详图。同一构件内的两种钢筋直径不会超过 2 倍级差,同时分布筋位置的纵筋直径最小值按照规范中要求的边缘构件纵筋最小直径控制。

不小于构造直径但不限制级差(在钢筋库即可):同一构件内的两种钢筋直径级差不做 限制,同时分布筋位置的纵筋直径最小值按照规范中要求的边缘构件纵筋最小直径控制。

不超过2倍级差:同一构件内的两种钢筋直径不会超过2倍级差,但是超出规范要求的最小纵筋根数的分布筋位置的纵筋直径最小值不再按照规范中要求的边缘构件纵筋最小直径控制。

不限制级差(在钢筋库即可): 同一构件内的两种钢筋直径级差不做限制,但是超出规 范要求的最小纵筋根数的分布筋位置的纵筋直径最小值不再按照规范中要求的边缘构件纵 筋最小直径控制。

&* 🍳 🔍 🚔 💊 🚄 🛠 🛠 🖋 🥬 🙋 🕫 🏗 🎦 👘 🐔 🗶 🔂 🗁 🏠 🏦 🚔 🖓 🛱 🚔 📔 🖳

钢筋混凝土查询表(混凝土强度、钢筋强度、梁钢筋、梁配筋率。

t Ø

(筋单排最大根数)

的	梁配筋率	梁纵筋单排	非最大根数	板钢筋	钢筋强度	混凝土	强度			
D/N	1	2	3	4	5	6	7	8	9	10
6	28	57	85	113	141	170	198	226	254	283
8	50	101	151	201	251	302	352	402	452	503
10	79	157	236	314	393	471	550	628	707	785
12	113	226	339	452	565	679	792	905	1018	1131
14	154	308	462	616	770	924	1078	1232	1385	1539
16	201	402	603	804	1005	1206	1407	1608	1810	2011
18	254	509	763	1018	1272	1527	1781	2036	2290	2545
20	314	628	942	1257	1571	1885	2199	2513	2827	3142
22	380	760	1140	1521	1901	2281	2661	3041	3421	3801
25	491	982	1473	1963	2454	2945	3436	3927	4418	4909
28	616	1232	1847	2463	3079	3695	4310	4926	5542	6158
32	804	1608	2413	3217	4021	4825	5630	6434	7238	8042
36	1018	2036	3054	4072	5089	6107	7125	8143	9161	10179
40	1257	2513	3770	5027	6283	7540	8796	10053	11310	12566
50	1963	3927	5890	7854	9817	11781	13744	15708	17671	19635

4.12 右下角工具栏增加钢筋面积查询表

在施工图各个模块右下角的工具栏中增加了钢筋面积查询表的功能,与 CAD 平台下的

功能一致。可以辅助用户在进行施工图绘制时对钢筋面积等进行查询。

4.13 柱施工图中异形柱选筋结果的调整

1、解决 4.0 版本中异形柱节点核心区箍筋选筋结果异常大的问题

2、异形柱箍筋加密区最大间距按照《混凝土异形柱结构技术规程》JGJ 149-2017 中的 6.2.10 条的要求进行调整。

6.2.	6.2.10 【自2022年4月1日起废止】抗震设计时,异形柱箍筋加密区的箍筋最大间距和箍				
筋最	筋最小直径应符合表6.2.10的规定。				
		表6.2.10 异形柱箍筋加密区箍筋的构	造要求		
[抗震等级	箍筋最大间距 (mm)	箍筋最小直径 (mm)		
[一级	5d 和 100 的较小值	10		
[二级	6d 和 100 的较小值	8		
[三级	7d 和 120(柱根 100)的较小值	8		
[四级	7d 和 150 (柱根 100) 的较小值	6 (柱根 8)		
	注: 1 d为纵向受力钢筋的最小直径;				
	2 柱根指底层柱下端箍筋加密区范围;				
	3 当剪跨比λ不大于2时,箍筋间距不应大于100mm,箍筋直径不应小于8mm。				

3、上部结构设计勾选"异形柱设计只考虑固定筋"时施工图中丢失分布筋的问题 当前处理中勾选"异形柱设计只考虑固定筋"时,此时程序会自动根据异形柱中要求的 纵筋最大间距确定分布筋的根数,并根据规范中要求的纵筋最小直径及与固定筋位置受力筋 的2倍级差确定分布筋的直径。

4.14 墙施工图中的 bug 修改

1、墙施工图中边缘构件拆分合并时轮廓显示异常的问题

2、墙施工图中连梁选筋时未考虑高强混凝土中对箍筋最小直径的调整 原程序中对于《抗规》附录 B.0.3 条中对梁箍筋最小直径的调整,仅在梁施工图中考虑 了,如果是在墙施工图中对连梁进行施工图绘制,未考虑该项调整。

4.1 版本中对此做出调整,即墙施工图中的连梁箍筋最小直径也执行 B.0.3 条,同时调整程序中关于高强混凝土的等级判断,大于 C60 时按照高强混凝土进行设计。

B.0.3		高强混凝土框架的抗震构造措施, 应符合下列要求:		
	1	梁端纵向受拉钢筋的配筋率不宜大于3% (HRB335级钢筋) 和2.6% (HRB400级钢		
筋)	•	梁端箍筋加密区的箍筋最小直径应比普通混凝土梁箍筋的最小直径增大2mm。		
	2	柱的轴压比限值宜按下列规定采用:不超过C60混凝土的柱可与普通混凝土柱相同,		
C65	~	C70混凝土的柱宜比普通混凝土柱减小0.05, C75~C80混凝土的柱宜比普通混凝土柱		
减小	减小0.1。			

3、面外荷载墙的裂缝计算结果显示与计算书中输出的信息不一致

- 4、同一个钢筋层内的边缘构件箍筋未取大的问题修改
- 5、调整特一级抗震构造措施下约束边缘构件的 Lc 长度计算

旧版本中:对于特一级抗震构造时,均按照一级9度的构造要求计算的Lc长度。 4.1版本中调整为:特一级抗震构造时取相应设防烈度下的边缘约束构件Lc长度。

3.10 特一级构件设计规定
3.10.1 (特一级抗震等级的钢筋混凝土构件除应符合一级钢筋混凝土构件的所有设计要求)
外,尚应符合本节的有关规定。

对于非9度区的结构前后版本的计算结果差异体现为: 4.1版本确定的 YBZ 尺寸变小。

4.15 梁施工图中的 bug 修改

1、型钢混凝土梁裂缝计算时型钢受拉翼缘至混凝土截面受压边缘的距离 h0f 计算值有误。

2、型钢混凝土梁裂缝计算时,当 1/4 梁高范围内没有型钢时,计算的型钢腹板影响系数 k 值有误。不应该出现负值,该情况下应该取 0。

4.16 楼板施工图中的 bug 修改

1、当与悬挑板相邻房间布置有钢筋桁架楼承板时,在进行楼承板施工计算时程序闪退。

2、加腋板负筋长度取值未按计算参数【负筋长度取值采用静跨跨长】取值,始终按照 楼板计算跨度确定的负筋长度。

3、支座筋断开绘制时,执行支座拉通或区域拉通后,断开绘制的支座筋未被删除的问题修改。

4、楼承板简支连接支座配筋与计算面积差别大。

5、在全房间洞上布置楼承板后导致楼承板在施工计算时闪退——需要用户在布置时避 开全房间洞的位置,程序无法处理。

6、修改房间导荷方式为对边导荷时,计算结果的调整。

旧版程序中,当修改对边导荷方向沿着楼板的长跨方向时,计算弯矩仍采用的短跨方向 的长度计算的,导致结果不正确。

修改对边导荷后计算配筋面积时使用的 h0 考虑双层钢筋的排布时不正确。

7、当楼板 X、Y 方向跨度相同时,楼板裂缝计算时使用的 h0 未考虑双向钢筋布置的影响。

三、裂	缝宽度验算。
1,	.X方向板带跨中裂缝: →
	Mg = 16.69 kN · m , Ftk = 2.01 N/mm2, h0 = 155 mm As = 524
mm2 +/	
	矩形截面, Ate=0.5*b*h=0.5*1000*180 = 90000 mm2 🚽
	<u>Pte</u> = 524/90000 = 0.006 ↔
	当 <u>ρte</u> <0.01 时, 取 <u>ρte</u> = 0.01 ↓
	σsq = Mg / (0.87 * ho * Ås) (砼规式 7.1.4−3) ↓
	σ _{SQ} = 16.69*10 ⁶ /(0.87*155*524) = 236.413 N/mm2 +
	裂缝间纵向受拉钢筋应变不均匀系数 Ψ, 按下列公式计算; →
	Ψ = 1.1 - 0.65 * ftk / (ρte * σsq) (砼规式 7.1.2-2)
41 - L	
	ψ = 1.1 - 0.65 * 2.01 / (0.010 * 236.41) = 0.548 $_{*}$
	ω _{max} = α _{cr} *ψ*σ _{sq} /Bs*(1.9c+0.08*Deg/ρte) (砼规式
7.1.2-1)	ąJ
	ωmax = 1.9*0.55*236.41/200000*(1.9*20+0.08*10.00/0.01) =
0.145 v	
+J	
2,	. Y 方向板带跨中裂缝; →
	Mg = 16.69 kN · m , Ftk = 2.01 N/mm2 h0 = 155 mm As = 524
mm2 ↔	
	矩形截面, Ate=0.5*b*h=0.5*1000*180 = 90000 mm2 🚽
	ρte = 524/90000 = 0.006 +
	当 <u>ρ te</u> <0.01 时, 取 <u>ρ te</u> = 0.01 ↓
	σsg = Mg / (0.87 * ho * As) (砼规式 7.1.4-3) 。
	σ _{SQ} = 16.69*10 [°] 6/(0.87*155*524) = 236.413 N/mm2 ↔
	裂缝间纵向受拉钢筋应变不均匀系数 Ψ, 按下列公式计算; 🚽
	Ψ = 1, 1 - 0, 65 * ftk / (Ω te * σ sq) (砕规式 7, 1, 2-2)

第五章 基础

5.1 以任意轮廓方式建立筏板及加厚区时增加正交、极轴追踪、动态输入坐标功 能

V4.1 针对按任意轮廓方式建立筏板或加厚区的交互性进行了改进,增加了正交、极轴 以及动态输入坐标功能。当打开底部捕捉命令按钮中的"正交"或"极轴"功能时,输入筏 板轮廓时即可显示极轴辅助线。同时当点击一个点后,可以直接输入相对于该点的坐标来确 定下一点的位置。

5.2 增加冲切验算高级参数:柱(墙)冲切筏板考虑不平衡力矩(桩筏基础)

在 v4.1 中,程序在高级参数中的"冲切/剪切/局部受压验算"参数页中增加了参数"柱(墙)冲切筏板考虑不平衡力矩(桩筏基础)",勾选该参数,对于桩筏基础的柱墙冲切验算 也考虑不平衡弯矩,不勾选则按桩基规范计算不考虑不平衡弯矩。默认不勾选。

高级参数-冲切/剪切/局部受压验算	
電波等級/中切/努切/局部支圧垫算 液体/防水板设计 地基漆化技术。例本系量设计 亦成计算 有限元分析求解 其他参数	 冲切验算 本切验算 考虑各方向中切厚度不相等的情况 一剪力這中切液板考虑不平衡力矩 (平板式花墓) 往(高)冲切液板考虑不平衡力矩 (桩花墓础) 组合這中切技等效矩形验算 自动组合成卡胶造进行冲切验算 临界:冲劈比[22] 0.25 20版造宽厚比限值[1./8] 6 (6°10) 梁板高差小于 300 mm 时按平筏验算柱(造)冲切 注:大于或等于此值时默认不验算
	确定取消

当工程中桩承载力合力点与竖向荷载重力点相距较远时,会产生较大不平衡力矩时,建 议勾选该参数。下图为勾选该选项时柱冲板计算书的变化,需注意验算公式的变化:

* * * * * * * * * * * * * * * * * * * *	以下输出桩筏基础的冲切验算结果(<u>考虑不平衡弯拒</u>) 依据规范: 建筑桩基技术规范JCJ94-2008第5.9.7条 運筑地基基础设计规范CB50007-2011第8.4.7条 混凝于结构设计规范CB50007-2010附录F 依据建筑桩基规范5.9.7条规定,圆柱截面按bc=0.8*dc换算成方柱截面 依据混凝土结构设计规范11.1.6条规定,地震组合下受冲切承载力除以0.85 体据人民防空地下室设计规范4.2.3条规定,人防组合下混凝土强度设计值予以调整 本程序将GB50007-2011公式(8.4.7-1)扩充为双向受弯 T = FL/(um*h0) + 0.sx*Munb,x*cABx/Isx + 0.sy*Munb,y*cABy/Isy 0.sx = 1-1/[1+2/3*sqrt(c1/c2)] 0.sy = 1-1/[1+2/3*sqrt(c2/c1)] 式中x和y是指冲切临界截面的主形心轴 T max (= β 0*(0.4+1.2/ β s)* β hp*ft β 0 = 0.84/(λ +0.2) 式中, λ =a,h0, λ - λ -T,0.25取0.25, λ 大于1取1。	*****
* * * * 冲构冲是	式中, 入=a/h0, 入小于0.25取0.25, 入大于1取1。 a为桩边缘到柱(墙)边缘距离, h0为有效高度 构件编号: Z-*表示柱, W-*表示墙 切类型 中柱冲板 件编号 Z-49 切锥形成方法 先凸包后偏移(简图参见屏幕) 若者虎不平衡容矩 考虑	* *

5.3 增加冲切验算高级参数:梁板高差小于设定值时柱(墙)按平筏验算

针对布置暗梁或者矮梁的梁式筏板基础,软件在"冲切/剪切/局部受压验算"高级参数 页中增加了参数"梁板高差小于(300)mm时按平筏验算",当布置的地基梁和筏板高差小 于设定值时,柱墙冲切将按照平板式筏基计算,不考虑地基梁的作用。例如:填300,当高 差大于300mm时,仍不验算冲切。当高差小于等于300mm时按平筏验算。

「品密創	
高级参数-冲切/剪切/局部受压验算	
?	冲切/剪切/局部受压验算 冲切验算
冲机/查机/员部受压验算 沉降计算 有限元分析求解 其他参数	 □考虑各方向冲切厚度不相等的情况 ☑ 剪力墙冲切筏板考虑不平衡力矩 (平板式筏基) □ 柱(1a))冲切筏板考虑不平衡力矩
	<□ 组合 信→ ・ ・ は合 は ・ </th
深板高差小于此值时按平夜验 算住(信)冲切 按弹性拨板假定计算,当梁高 与板焊接近时,地基梁、筏 板、在(信)交点需验算冲切液 载力。考虑到目前规范尚未提供 验算方法,当梁高与板厚之差小 于此值时,数认不验算柱(信)冲 切。当梁高与板厚之差大于或等 于此值时,默认不验算柱(信)冲 切。	临界:冲跨比[入] 0.25 (0 [~] 0.25) 短肢墙宽厚比限值[L/B] 8 (8 [~] 10) 梁板高差小于 ³⁰⁰ mm 时按平筏验算柱(墙):冲切 注:大于或等于此值时默认不验算
	确定取消

此时,冲切验算结果简图中显示的冲切安全系数是按照平板式筏基验算的结果。由于冲 切验算未考虑地基梁的作用,此时的验算结果偏安全。

下图为一个实例, 筏板板厚为 500mm, 其中地基梁梁高为 750mm, 高差为 250mm, 当使用该参数的默认值 300mm 时, 查看冲切验算结果, 程序对该位置的柱冲切结果均进行显示输出:

5.4 增加显示承台桩拔力平均值及最不利组合号

V4.1版本针对承台抗拔承载力结果显示增加了拔力平均值输出功能。

在以往版本中,程序对于筏板或防水板内承台的抗拔承载力验算,只输出每个承台内单 桩的计算结果。在 v4.1 版本中,程序在原有基础之上,还增加了每个承台的平均拔力输出, 其结果位于每个承台的正下方。如下图所示,该承台为五桩承台,程序在该承台下方输出平 均拔力值(Tk,avg),其值为157.9kN,控制组合为23 号标准组合。

5.5 改进整体抗浮验算计算结果显示

V4.1 版本改进了有嵌套关系的筏板计算结果显示。在以往的版本中,对于有重叠和嵌

套关系的筏板,程序会将所有联通的筏板中最大那块定义为主筏板,主筏板位置输出所有联通区域的抗浮验算结果,其他区域则输出的是各自的抗浮结果,如下图所示:

为了避免误解,在 v4.1 中,程序对于这种情况进行改进。当模型中存在筏板重叠情况时,程序会在各自位置输出每个筏板各自的抗浮稳定验算结果,同时会在所有筏板的下方输出整块联通区域的验算结果,如下图所示:

5.6 基础送审报告增加选项,允许修改图面字体大小与绘图色彩

在以往的版本中,基础送审报告中的图纸强制使用彩色显示,对于一些构件(如柱)在 图面上很不清晰。且图纸的基准字高较难控制,默认的字高往往很小,在图面上很难识别。

V4.1 版本针对报告选项进行改进,增加了基准字高与插图色彩的调控功能,默认字高为 500,彩色显示,用户可根据需要进行调整。

下图为将基准字高改为 1200 并勾选"黑白插图"选项的 word 文档实际效果展示:

5.7 改进筏板裂缝验算,按最不利标准组合进行验算

在 v4.0 及以前的版本中,基础裂缝验算一直使用的是两个固定的组合: 1.0 恒+1.0 活、

1.0 恒-1.0 浮,但是根据《建筑地基基础设计规范》GB 50007-2011 中 3.0.5 第四款的要求, 基础的裂缝验算需要使用正常使用极限状态作用下的标准组合进行验算。

因此,原先的方式其实已无法满足规范以及实际设计需求了,因此,在 v4.1 中程序针 对筏板的裂缝验算功能进行改进,支持对所有标准组合内力进行包络,针对不同验算部位取 标准组合最不利内力进行验算。相应的,当标准组合中存在自定义工况、吊车工况等特殊工 况时,程序也能将这些荷载考虑进来,如下图所示:

后续版本中将继续完善此功能,使其他各类构件(如地基梁、承台、独基等)均支持使 用标准组合验算裂缝。

5.8 优化新老地质资料切换界面逻辑

为了避免用户对新老地质资料产生混淆,两者混用导致地质资料数据文件损坏,v4.1 针对新老地质资料的界面切换逻辑进行了优化。当在地质资料界面点击"切换旧版地质资料" 按钮时,程序会禁用所有新版地质资料(.csv)的相关功能按钮,如下图所示:

此时程序将自动进入旧版地质资料(.dz)界面:

地质资料
新建地质资料
打开地质资料
导入DWG孔点
土层参数信息表
标准孔点
輸入孔点
复制孔点
删除孔点
孔点编辑
平移对位
旋转对位
土剖面图
孔点剖面
土层三维图
保存图形
切换新版地质资料

若想切换回新版地质资料,点击旧版地质资料界面最下方的"切换新版地质资料"按钮即可进行切换。程序在后续计算时,将使用最后切换到的地质资料进行相关计算。

第六章 钢结构施工图

6.1 全楼材料表工程量统计改进

钢结构施工图全楼构件和零件板材统计时按照真实体积计算工程量。

6.2 主次梁刚接节点改进

主次梁刚接连接形式为翼缘焊接、腹板连接板连接时,当遇到主梁与次梁截面高度差 ≤150mm时,按照图集做法次梁连接处采用变截面处理。

6.3 节点详图去除多余的重复线段

节点详图改进了去除重合线算法和虚线颜色,节点图面显示对比如下。

第七章 装配式

7.1 叠合板中同一根钢筋遇多个线盒或洞口时,可以统一弯折避让

7.2 优化叠合板详图绘制细节

4.1.0版本对叠合板详图中洞口处绘制细节进行了优化。

7.3 优化预制墙墙身竖向分布筋初始生成规则

4.1.0 版本改进预制墙墙身竖向分布筋初始生成,初始生成配筋时会读取施工图中现浇 混凝土的配筋规格,然后根据面积等效原则初始生成预制墙墙身竖向分布筋。

如 Q1 墙身竖向分布筋为 C10@300, 在初始生成预制墙墙身竖向贯通钢筋时会保持钢筋间距不变(套筒钢筋梅花形布置,墙同一侧两根套筒钢筋间距为 600),面积等效时套筒处钢筋直径为 2*sqart(5*5*2)=14.14,取直径为 16 的钢筋。

7.4 高精度显示下,预制柱增加柱顶、柱顶键槽的三维显示

7.5 上海规程装配率计算时,计算书中输出各预制构件的总体积

	二、项目装配率计算									
	1.主体结构、围护墙									
¢	 1、建筑单体预制构件总体积(m³)(不包括非承重内隔墙)为:343.25 2、建筑单体全部构件总体积(m³)(不包括非承重内隔墙)为:1186.61 3、建筑单体装配预制率为:28.9% Table2-1 第 1 基准层主体结构,周护墙统计表 									
	序号	构件类别	编号	体积 (m^3)	数量(个)	总体积 (m^3)	系数			
	1	预制梁	YZL1	0.36	1	0.36	1.00			
	2	预制梁	YZL10	0.34	4	1.36	1.00			
	3	预制梁	YZL12	0.24	1	0.24	1.00	+		
	4	预制梁	YZL13	0.09	1	0.09	1.00			
	5	预制梁	YZL14	0.21	1	0.21	1.00			
	6	预制梁	YZL15	0.24	1	0.24	1.00			
	7	预制梁	YZL16	0.48	2	0.95	1.00			

7.6 装配率计算修正问题

1、修正上海装配率计算时梁柱的属性指定功能,并修正预制梁装装配率计算系数的问题。

2、修正福建省装配式计算得分表中,内隔墙与管线、装修一体化重复输出的问题。

3、修正装配率计算时,预制楼梯只统计了面积没有统计数量的问题。

7.7 布置叠合板的房间,修正板计算时选择 crb600h 等级钢筋时,计算输出钢筋 等级没有选用 crb600h 等级的问题

布置叠合板的房间,板计算时取用的钢筋等级来自于叠合板参数中选择的钢筋等级。 4.0.0 版本扩充了板计算钢筋等级库,但叠合板参数中的钢筋等级库没有对应更新,会导致 叠合板参数中选择 crb600h 等级钢筋时,叠合板房间的板计算取用的钢筋等级并不是 crb600h 等级,4.1.0 修正了该问题。

2↓ □ ≶ Search	
参数	用户设置
□ 叠合板配筋设计参数	
□ 保护层、钢筋等级	
设 叠合板保护层厚度	15
钢筋等级	HRB400
□ 切角钢筋	HPB235
叠合板与柱相交处切角时,钢筋也截断	HPB300
设 补强钢筋根数	HRB335
补强钢筋锚固长度	HRB400
补品网络直径	CRB550
日海口站温润路	HTRB600
2 414 112 1130 1132 1130 1132 1130 1132 1132	HTRB630
2023人で12月11日11日前の加需要本用載画作15型 ういなの数単用と度	CRB600H
115里的肋田回下肢 シリョンのなまな	HRB635
	12
	● 传统对称排作 ○ 非对称排作
前后一个倾航头省笠航载大辺距	60
剖面對中竖筋囲在横筋上方	
竖筋在横筋上方时,桁架钢筋绘制在竖筋上方	
□ 钢筋伸出与支座关系	
钢铬伸出专体由线的距率(mm)	0

需要注意的是,如果打开的是 4.0.0 版本的工程,需要对叠合板参数执行"恢复默认", 才能将参数中的钢筋等级库补齐。

7.8 其他修正问题

1、修正叠合板洞口加强筋距洞口边太近的问题。

2、修正叠合板修改桁架筋位置后,吊点位置没有跟着更新的问题。

3、修正设置了预制梁设置了与竖向构件搭接长度后,主次梁搭接处的主梁也会出现搭接长度的问题。

4、修正预制柱三维编辑中修改斜撑预埋件的位置,二维详图没有更新的问题

5、修正平面图编辑模块进行预制梁、预制柱接缝验算时,剪力设计值读取异常的问题。

第八章 减隔震模块

8.1 反应谱迭代方式增加阻尼器迭代,包括位移型和速度型

迭代过程同隔震支座,均采用 JGJ297-2013《建筑消能减震技术规程》 (以下简称消能 减震规程)6.3.3 条条文说明:

6.3 消能部件设计及附加阻尼比

6.3.3 对于消能减震结构,无法预先估计主体结构在加入消能 部件后的最终变形情况,只能是预先假设一个阻尼比,将消能部 件布置于结构中,并调整消能器的数量和位置,再对消能减震结 构进行计算,反算出消能器在相应的阻尼比情况下的位移,通过 消能器的恢复力模型和相应的公式求解消能减震结构的附加阻尼 比,并反复迭代,使计算出的附加阻尼比与预先假设的阻尼比接 近时,则计算结束。

采用附加阻尼比的迭代方法计算步骤如下:

1 假定各个消能器的设计参数和消能减震结构的总阻尼 比ζ。

2 将消能减震结构的总阻尼比和各个消能器的设计参数代入分析模型中,根据现行国家标准《建筑抗震设计规范》 GB 50011的规定,采用振型分解反应谱法进行结构分析。

3 经结构分析可得第 *i* 楼层的水平剪力 *F_i*、水平地震作用标准值的位移 *u_i* 及第 *j* 个消能器的阻尼力 *F_{dj}*及相对位移 Δ*u_{dj}*。

 4 由式(6.3.2-1)、式(6.3.2-2)、式(6.3.2-3)、式
 (6.3.2-4)和式(6.3.2-5)计算消能器附加给结构的有效阻尼 比ζd。

5 重新修正各个消能器的设计参数,并利用下式计算消能 减震结构的总阻尼比 ζ:

$$\zeta = \zeta_1 + \zeta_d \tag{14}$$

式中: ζ1 ----主体结构阻尼比;

ζ。——消能器附加给结构的有效阻尼比。

6 将步骤 5 计算得到的消能减震结构的总阻尼比和各个消 能器的参数作为初始假设值,重复步骤 2~步骤 5。反复迭代, 直至步骤 2 使用的消能减震结构的总阻尼比与步骤 5 计算得到的 消能减震结构的总阻尼比接近。

几点说明:

1. 速度型阻尼器能量计算:

耗的能量,可按下式计算: $W_{cj} = \lambda_1 F_{djmax} \Delta u_j$ (6.3.2-4) 式中: λ_1 ——阻尼指数的函数,可按表 6.3.2 取值; F_{djmax} ——第 j 个消能器在相应水平地震作用下的最大阻尼力 (kN)。 $F_{dimax} = C(\omega u)^{\alpha}$, C为阻尼系数, α 为阻尼指数, ω 为基本周期对应频率。

2. 结构总应变能计算:

按照抗规,结构总应变能 Ws 考虑所有振型应变能;

2 消能部件附加给结构的有效阻尼比可按下式计算:

$$\zeta_d = \sum_{j=1}^n W_{cj}/4\pi W_s$$
 (6.3.2-1)
式中: ζ_d ——消能减震结构的附加有效阻尼比;
 W_{cj} ——第 j 个消能部件在结构预期层间位移 Δu_j 下往复循
环—周所消耗的能量 (kN・m);
 W_s ——消能减震结构在水平地震作用下的总应变能 (kN・m)。

因为计算阻尼器耗能 Wcj 是用的所有振型,相对应的,结构总应变能也采用的所有振型的应变能;

3. 应用场景:

(1)隔震层附设阻尼器的情况

计算以隔震结构为主,迭代确定等效参数+复振型分解反应谱;

(2)纯减震结构(只有阻尼器)

迭代确定等效参数+实振型能量法,提供了按照消能减震规程 6.3.3 条反应谱迭代计算减震结构的方法。

8.2 迭代方法确定的等效参数可以在减震器参数中显示

当"减隔震元件的有效刚度和有效阻尼"选择"迭代确定"时,迭代得到的等效参数可以在设计结果-构件编号-减震器参数中显示;

8.3 最大阻尼比对能量法也起作用

之前的最大附加阻尼比限值只对强制解耦法有效,现改为对能量法也有效。

比物首件在自	→地震信息 > 隔震減震		
「竹忌座信忌 ト算控制信息		包络设计	
控制信息 刚度系数 二ND的应	隔震 隔震层数 0	大震计算模型 □ 不屈服	弹性
P/IX122 分析求解参数	隔震层层号	大震地震影响系数較大值	0.28
【荷载信息 基本参数	隔震结构设计方法 分部设计	── 周期折減系数 1 持征周期 ✓ 不屈服	0.3
指定风荷载	分部设计法		
22篇信息 - W型信息	调整后水平向减震系数(β/ψ) 1	● 全楼统一	5
自定义影响系数曲线	直接设计法	○ 按材料区分 钢	2
时域显式随机模拟法 地震作用放大系数	□ 考虑钢筋超强系数	型钢砼 5 混凝土	5
性能设计 她能句终设计	□ 计算中震非隔震模型	连梁刚度折瑊系数	1
福震減震	减隔震 📃 🔍		1.5
3 3 5 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	最大附加阻尼比 0.25	■考虑双向地震作用	1.0
i们我后忌 财件设计信息	反应谱计算方法	弹性	
构件设计信息	● 实振型分解反应谱法		
- 钢构件设计信息 	减震隔震附加阻尼比算法 能量法	▶ ● 全楼统一	5
掛信息		── ○ 按材料区分 钢	2
材科変数 钢筋品度	· 资源季二件方动则度和方动图 P	型钢砼 5 混凝土	5
下室信息	◎ 采用输入的等效线性属性	海沙网度长闻多数	1
「莪组合		上来的复加减示数 由梁刚度訪大系数	1 5
组合表		老虎双向地雲作用	1.0
自定义工况组合 第 会加因	○日幼木用時住时柱口具结末		
er me 電式			
		방글:국내고 245 수 41 개 명	
		以 궳晨相天的参数设 击 。	

8.4 连接单元产品库增加标准和企业分类, 云南减震规程产品入库

原来的产品全部归入"企业"大类-"其他"子类;

🔳 连接单元定义								
LK-BRB2 VED-NLx300-(35.0	类型: 阻尼器麦克斯韦	\sim						
MYD-Sx200x1.0-LY LNR400-5-0.392	有效刚度KE 有效阻尼 kN/m.kN.m/radCE(kN.s/m	非线性 刚度) K(kN/m) C(阻尼 阻尼指数 kN.s/m)exp					
	<u></u> υ1 0 0	500000 2	B1.171 0.25					
	 ₩2 0 0		0					
	_ ₩3 0 0	0 0	0					
	R1 0 0	0 0	0					
	R 2 0 0	0 0	0					
	R3 0 0	0 0	0					
添加	删除 应用	↑ 收起 ↑	确定	取消				
企业 😕 🗸	☑ 使用构件型号作为定义名称							
全部	阻尼器型号	有效刚度(kN/m)	有效阻尼(kN.s/m) 阻尼(kN.s/m) 刚度(kN/m)	阻尼指数下限	阻尼指数上限	长度L(m ^
^	JGVFD-NLx100x50	0	0	133	500000	0.2	0.2	780
	JGVFD-NLx100x100	0	0	133	500000	0.2	0.2	1030
	JGVFD-NLx100x200	0	0	133	500000	0.2	0.2	1530
	JGVFD-NLx200x50	0	0	267	500000	0.2	0.2	935
	JGVFD-NLx200x100	0	0	267	500000	0.2	0.2	1185
•	JGVFD-NLx200x200	0	0	267	500000	0.2	0.2	1685
	JGVFD-NLx250x50	0	0	333	500000	0.2	0.2	935
	JGVFD-NLx250x100	0	0	333	500000	0.2	0.2	1185 ¥
上一	「「「「「「」」」」	制印码文						
17月1日日	P巴拍 J 厶 用 顺辰	5万亿7王日177 日	1日 0					
								L X
LK-BRB2 VFD-NLx300-(35, 0	类型: 阻尼器麦克斯韦	~						
MYD-5x200x1.0-LY LNR400-5-0.392	有效刚度KE 有效阻尼 kN/m, kN.m/radCE(kN.s/m	非线性 例度) K(kN/m) C(阻尼 阻尼指数 kN.s/m)exp					
	∠ ν1 0 0	500000 2	81.171 0.25					
	□ V2 0 0	0 0	0					
	□ v 3 0 0	0 0	0					
	R1 0 0	0 0	0					
	R2 0 0		0					
			U					
 \			75-2-	me outr				
жыл		↑收起↑	朔定	取消				
标准 🦰 🗸	☑ 使用构件型号作为定义名称							
云南减震规程	阻尼器型号	有效刚度(kN/m) 科	有效阻尼(kN.s/m)	阻尼(kN.s/m)	刚度(kN/m)	且尼指数下限	目尼指数上限	长度L(mm) ^
	VFD-NLx300-(45,0.2)			179.148	500000 0	0.2 0	.2	
	VFD-NLx300-(40,0.2)			159.243	500000 0	.2 0	.2	
	VFD-NLx300-(35,0.2)			139.338	500000 0	.2 0	.2	
	VFD-NLx300-(30,0.2)			119.432	500000 0	.2 0	.2	
	VFD-NLx300-(25,0.2)			99.5268	500000 0	.2 0	.2	
	VFD-NLx300-(45,0.25)			253.054	500000 0	.25 0	.25	
	VFD-NLx300-(40,0.25)			224.937	500000 0	.25 0	.25	
	VFD-NLx300-(35,0.25)			196.819	500000 0	.25 0	.25	¥ > .
1								u

8.5 弹性时程直接计算减震结构附加阻尼比

按照消能减震规程 6.3.2 直接采用弹性时程结果计算减震结构附加阻尼比;程序对每个 工况均计算一次附加阻尼比,同时给出同一角度的多条地震波的平均值。输出文本在工程目 录下的设计结果文件夹中,文件名为 AddedDampingRatio.out。

中市 人工波 県入 生成		工況組合	楼层结果	↓ 连接单元	■ 能量曲线	↓[] 隔震支座	■顧農	隔震送审报告	」 附加阻尼比	反应谱规范谱
自定义地震波	前处理	计算	后外	心理			隔震验	算	减震计算	对比图

工程师计算减震附加阻尼比的常用方法,X向7条波取平均,Y向7条波取平均。

根	据《建筑消能幕	《震技术規程》 JGJ 29	7-2013 中第6.3.2茶计算				
]	E況1: Anza-02	2_NO_1947.Tg(0.54)	[0.0]+[COMB1]+[M]				
	层−塔号 1-1	主方向楂层剪力 2766.086	主方向层间位移 0,005	主方向应变能 13.059	次方向桧层剪力 395,586	次方向层间位移 次方向 0.002	向应变能 0.667
	2-1	2535.597	0.005	11.948	415.772	0.002	0.758
	3-1	1906.518	0.004	6.911	295.568	0.001	0.401
	4-1	1228, 220	0.002	2.726	177.349	0.001	0.130
á	全槽层总应变能	: 36.599 (Kn*m)					
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	耗能量(Kn*n) 耗能 2.018					
	2	2.461					
	3	2.459					
	4	2.021					
	Б	0.125					
	6	0.143					
	7	0.052					
	8	0.060					
	9	2.228					
'	10	2.539					
	11	2.229					
	12	2.538					
	13	0.157					
	14	0.173					
	15	0.074					
	16	0.082					
	17	1.820					
	18	1.800					
	19	0.056					
	20	0.061					
	21	0.813					
	22	0.804					
	23	0.020					
	24	0.022					
ii ii	主度型阻尼器总	耗能: 24.754(Kn•	'n)				
ß	目尼醫总应变能	: 24.754 (Kn*m)					
ì	6工:2下附加阻。	尼比: 5.38%					
	各工况附加阻所	尼比平均值统计					
全	部0.0度地震波	工况的附加阻尼比平均	9值:5.40%				
全	部90.0度地震》	皮工况的附加阻尼比平:	均值:4.51%				

8.6 弹性时程中,隔震支座增加多组合、平均值统计

规范规定采用 7 条波时可取结果的平均值;隔震支座中的支座应力、位移及内力增加多 条波平均值统计,以及多组合统计。同时选择平均值和多个组合,先对某一组合取 7 条波的 平均值,然后再取各组合的较大值。

时程工况列表			
序号	时程工况名称	是否计 ^	
1	ArtWave-RH1TG045,Tg(0.45) [0.0]+[M]		
2	ArtWave-RH1TG045,Tg(0.45) [90.0]+[M]		
3	Big Bear-01_NO_902,Tg(0.49) [0.0]+[M]		
4	Big Bear-01_NO_902,Tg(0.49) [90.0]+[M]		
5	Chalfant Valley-01_NO_547,Tg(0.43) [0.0]+[M]		工况选择
6	Chalfant Valley-01_NO_547,Tg(0.43) [90.0]+[M]		
7	Chi-Chi Taiwan-02 NO 2165 To(0.43) [0.0]+[M]	<u> </u>	
		H	
工况组合列表		×	 ● 単工況 ○ 包络值 ○ 平均值 时程工況
序号	工况组合名称	是否计算	
1	1:恒0.0活0.0 PGA 1080.0+0.0+0.0		
2	2:恒1.0活0.5 PGA 1080.0+0.0+0.0		
3	3:恒1.0活0.5 PGA 1080.0+0.0+280.8		
4	4:恒0.9活0.0 PGA 1080.0+0.0+351.0		工况选择
5	5:恒1.0活0.5 PGA 0.0+0.0+0.0		工况组合
[全选 清空 确定 取消		组合选择

8.7 增加中震非隔震模型

将中震隔震模型中的隔震支座连接属性替换为铰接的连接属性,从而实现自动生成中震 非隔震模型。

抗通规 5.1.7 条 1 款规定:隔震层以上结构的总水平地震作用,不得低于 6 度设防非隔 震结构的总水平地震作用;程序对中震非隔震模型的剪力按地震影响系数最大值进行比例缩 放,从而得到 6 度非隔震结构的剪力,将其与本烈度中震隔震模型剪力进行比较,结果输出 在隔震层结果-隔震层验算-总水平力文本中;

5.1.7	隔震层以上结构应符合下列规定:
1	隔震层以上结构的总水平地震作用,不得低于6度设防
非隔震	结构的总水平地震作用: 各楼层的水平地震剪力尚应符合
本规范	第4.2.3条的规定。

8.8 不同隔震支座类型以不同颜色显示

前处理中定义的不同支座类型,以不同颜色显示,方便区分。
• SG 👩 70) 🕞 🖳 🛱		}	U	鍧		2		
节点属性 抗震 材料 重要性	生 性能 隔震 人防		多塔定义	楼层属性	风荷载	计算长度	温度荷载	活荷折减	生成数据
	1414		•	•	-		-	•	及安风空
â // //	· +å→ /	La F	🕨 🎻 🥢	局部系	风荷载	计算长度	温度荷载	活荷折减	生成数
附加质量 局部坐标系 连接属	◆ ✓	2000 支座位	移 🖌 删除 🖌 删除	約束 :位移					
48 Mari UT KE: 998000 CE, 0 KE, 99800 UP, KE: 1040 CE (0 K: 7884 KY) ▲3 KE: 1040 CE (0 K: 7884 KY)				[進振期性 2 U1 KE・1.2 U2 KE:13 山3 KE:13	247e+006 CE+ 14 CE: 0 K: 95 14 CE: 0 K: 95	:0 Кс: 1.247ен 96 КҮ: 62.4 К 96 КҮ: 62.4 К	-006 Kl. 1247) YR. 0 077 YR. 0 077	XX A=0 196
	定义			_		×			
<u> </u>	类型: 隔震支座	~			i	计参数			
连接属性2 连接属性3 连接属性4	有效刚度KE kN/m, kN.m/x	有效阻尼 非线性 radCE(kN.s/m)	刚度 扎 K(kN/m) K	抗拉刚度 截 it(kN/m) A(面积 m2)				
	V1 998000		998000 9	9800 0.	123				
			屈	服力KY (kn)原	硼后刚度	łłkyr			
	✓ υ2 1040	0 🛛	7684 3	8.9 0.	077				
	✓ U3 1040		7684 3	8.9 0.	.077				
	R1 0	0							
	R2 0	0							
	R3 0	0							
添加	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	1 ↓ 打开	数据库 ↓	确定	I	则消			
494843 UI KE:1.581e+006 CE:0 Kc:1. UI CKE:1588 CE:0 K:11507 KY U3 KE:1588 CE:0 K:11507 KY	581e+006 Kt:158100 A=0 :91.4 KYR:0.077 :91.4 KYR:0.077	.283		[総接属性 4 U1 KE+1.8 U2 KE:18 W3 KE:18	394e+006 CE: 05 CE:0 K:13 05 CE:0 K:13	:0 Kc:1.894e+ 458 KY:116.8 458 KY:116.8	-006 Kt: 1894 KYR: 0.077 KYR: 0.077	00 A-0.385

8.9 增加线性时程选波

对于减隔震结构,原来的选波总是采用非线性时程进行选波,速度相对较慢,但精度较高;现在选波对话框中的时程选波参数内增加减隔震结构的线性时程选波选项,默认勾选。

线性时程选波读取上部反应谱计算的振型和各振型阻尼比,采用线性时程进行选波,速 度较快,且能兼顾精度,达到一个速度与精度的平衡;对隔震结构,选择多遇及设防水准选 波时,读取主模型的振型和阻尼比,选择罕遇水准选波时,读取大震弹性子模型中的振型和 阻尼比,当用户没有选择计算大震弹性子模型时,将采用主模型的振型及阻尼比进行选波, 请用户注意。

建议用户采用线性时程选波选出符合要求的波组之后,再将拟选用的一个波组作为备选 波进行一次非线性时程选波,进行最后的确认。

YJKCAD-	·参数输入-弹性时程分	析信息		后向逆进冲关数	×
叩虎	添加地震波	五 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	选中地震波	反应诸远波奓剑 起始周期	0.01
1 2 3 4 5 < 4 5 < 4 5 < 4 5 (4 5 5 (4 5) 5 (5) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	添加地震波 名称 Chi-Chi_Taiwan-03 Chi-Chi, Taiwan-03 Chi-Chi, Taiwan-03 Chi-Chi, Taiwan-03 Chi-Chi_Taiwan-03 CapeMendocino_N0_ 正確 理尼比(%) 全楼统一 该材料区分 這種参数设置只影响 请在计算参数对话框	删除道 :_NO_2545, TG(0.53 i5_NO_2962, Tg(0.1 i5_NO_2952, Tg(0.1 :_NO_2533, TG(0.50) :_NO_2533, TG(0.50) :_NO_2533, TG(0.50) :_NO_2533, TG(0.50) :_NO_2533, TG(0.50) :_NO_2533, TG(0.50) :	选中地震波 8) 56) 7) 5 2 5 5 5 5 时程分析使用	些面周期 终止周期 周期步长 特征周期(s) 参与振型数 设防烈度 地震水准 地震影响系数最大值 时程选波参数 峰值加速度类型: ● 主方向峰值加速度(om/s ² 次方向峰值加速度(om/s ² 积分步长(s) ☑线性时程选波 读取前处理地震	0.02 0.5 15 8 (0.3g) ∨ 罕遇地震 ∨ 1.2) PGA ○ EPA) 510) 0 0.01
			/	确定	取消