版本号: Release3.1.1

目 录

第一章 建模平台 1
1.1 大跨空间结构蒙皮效率的大幅度提升 1
1.2 新增蒙皮翘曲角度误差值参数 1
1.3 空间结构中新增节点归并功能 1
1.4 新增蒙皮面积统计功能 1
1.5 空间结构中新增斜杆打断功能 2
1.6 模型链接显示改进 2
1.7 将默认快捷命令【s】由对应拖拽改为对应节点平移命令2
1.8 增加对飘窗的复制、移动、镜像等编辑功能的支持 2
1.9 增加型钢混凝土梁工程量统计中混凝土体积扣减型钢体积功能 2
1.10 吊车荷载布置功能权限的改进 2
第二章 上部结构计算 3
2.1 新广东高规增加风荷载各层层位移角输出3
2.2 优化位移、振型动画的显示 4
2.3 优化等值线中板的配筋结果显示 5
2.4 优化新广东高规下的参数默认设置 6
 2.4 优化新广东高规下的参数默认设置6 2.5 优化活荷载不利布置的参数默认6
 2.4 优化新广东高规下的参数默认设置
 2.4 优化新广东高规下的参数默认设置
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7 3.2 梁施工图. 7
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7 3.2 梁施工图. 7 3.2.1 增加参数控制与 200 厚墙相连梁的纵筋单排最大根数. 7
 2.4 优化新广东高规下的参数默认设置
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7 3.2.2 梁施工图. 7 3.2.2 修改梁施工图的偏拉标志输出格式. 8 3.2.3 读 CAD 图功能改进. 8
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7 3.2 梁施工图. 7 3.2.1 增加参数控制与 200 厚墙相连梁的纵筋单排最大根数. 7 3.2.2 修改梁施工图的偏拉标志输出格式. 8 3.2.3 读 CAD 图功能改进. 8 3.3 柱施工图. 9
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7 3.2 梁施工图. 7 3.2.1 增加参数控制与 200 厚墙相连梁的纵筋单排最大根数. 7 3.2.2 修改梁施工图的偏拉标志输出格式. 8 3.3.1 完善跃层柱的数据. 9
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图 7 3.1 板施工图 7 3.1.1 读取 CAD 图功能改进 7 3.2 梁施工图 7 3.2.1 增加参数控制与 200 厚墙相连梁的纵筋单排最大根数 7 3.2.2 修改梁施工图的偏拉标志输出格式 8 3.2.3 读 CAD 图功能改进 8 3.3 柱施工图 9 3.4 墙施工图 9
2.4 优化新广东高规下的参数默认设置 6 2.5 优化活荷载不利布置的参数默认 6 第三章 施工图. 7 3.1 板施工图. 7 3.1.1 读取 CAD 图功能改进. 7 3.2 梁施工图. 7 3.2.1 增加参数控制与 200 厚墙相连梁的纵筋单排最大根数. 7 3.2.2 修改梁施工图的偏拉标志输出格式. 8 3.2.3 读 CAD 图功能改进. 8 3.4 推施工图. 9 3.4.1 改进带有边框柱的边缘构件箍筋的绘制形式. 9
 2.4 优化新广东高规下的参数默认设置
 2.4 优化新广东高规下的参数默认设置
 2.4 优化新广东高规下的参数默认设置

第五章 钢结构	
5.1 压型钢板布置前处理自动读取肋间混凝土自重	
5.2 钢柱柱长系数计算不考虑悬挑梁线刚度	
5.3 增加抗剪连接件单侧边距	
5.4 特殊梁铰接定义增加框选指定	
5.5 组合梁自动生成增加手动选取功能	
5.6 组合梁翼板生成考虑区分 b1 和 b2	
5.7 组合梁翼板钢筋增加横筋设置	
5.8 组合梁剪跨区段弯矩计算荷载组合读取参数中分项系数	
5.9 组合梁增加施工阶段稳定验算	
5.10 钢结构施工图增加分层导入功能	
第六章 装配式	
6.1 本层三维显示的差异	
6.2 标准层与自然层预制构件属性的关系	
第七章 弹性时程及弹塑性时程	22
7.1 弹性时程及弹塑性时程支持新广东高规反应谱	
7.2 优化弹性时程及弹塑性时程中地震波与规范反应谱的对比图显示	
第八章 接口程序	
8.1 增加自动工程修复的功能	
8.2 对 L 形柱导入 ETABS、SAP2000 进行优化	23
8.3 3D3S 接口,完善了支座约束及杆端释放信息的导入	

第一章 建模平台

1.1 大跨空间结构蒙皮效率的大幅度提升

3.1 及之前的版本用户反馈大跨、大体量空间结构操作卡顿、蒙皮效率低、蒙皮导荷后生成的节 点荷载定义过多、复杂空间结构生成蒙皮不准确等问题。311 版本针对上述问题进行了多项改进, 蒙皮效率明显提升,大规模复杂空间结构蒙皮时间大大缩短。

说明:对于超大体量的复杂空间结构蒙皮,可以用分次执行的方式来提高蒙皮效率。

1.2 新增蒙皮翘曲角度误差值参数

蒙皮方向设置中增加【蒙皮面翘曲角度误差最大值】参数由用户填写功能,默认角度为 10°, 如下图所示:

部分空间桁架模型用默认的误差角度 10°蒙皮,可能出现部分蒙皮面没有生成蒙皮或生成的异常蒙皮,可根据工程情况适当修改该参数值。

说明: 在杆件蒙皮、自动恒活、自动生成上下弦杆功能中均增加了该参数。

1.3 空间结构中新增节点归并功能

空间结构中新增【节点归并】功能,可以自动将归并距离范围内的所有节点自动归并。

1.4 新增蒙皮面积统计功能

蒙皮下拉菜单中新增【蒙皮面积】菜单,可以统计输出每个蒙皮面的面积及总的蒙皮面积。蒙 皮面积显示功能给用户手核蒙皮导荷结果提供了方便。

执行【蒙皮面积】命令后显示了每个蒙皮面的面积、蒙皮面的个数及总的蒙皮面积,如下图所示:

1.5 空间结构中新增斜杆打断功能

空间结构中新增【斜杆打断】命令,可以将空间结构中所有交叉斜撑自动打断。

1.6 模型链接显示改进

模型链接中若被链接工程与当前工程对应楼层底标高不同,软件自动调整显示链接模型与当前工程底标高显示一致。

1.7 将默认快捷命令【s】由对应拖拽改为对应节点平移命令

1.8 增加对飘窗的复制、移动、镜像等编辑功能的支持

1.9 增加型钢混凝土梁工程量统计中混凝土体积扣减型钢体积功能

1.10 吊车荷载布置功能权限的改进

3.1 及之前的版本,当软件安装在系统盘,需要用管理员身份启动软件后才可以布置吊车荷载, 否则会崩溃。3.1.1 版本进行了改进,当软件安装在系统盘,也可以不需要管理员身份启动软件就可 以正常布置吊车荷载。

第二章 上部结构计算

2.1 新广东高规增加风荷载各层层位移角输出

依据新广东高规的要求,对于风荷载的位移控制,由之前的层间位移角改为项层的层位移角,即结构顶层的质心位移除以该层到地面的高度。在软件中选择"广东高规(2021)"后,程序在wdisp 文本中输出项层的层位移角,同时在文本 NEW-指标汇总中输出所有层的层位移角。

Floon	Towen Imax	Max-(X)	$\Delta v_{\Theta_{-}}(\mathbf{X})$	Patio_(X)	h		
F100P	I ImaxD	Max-Dx	Ave-(x) Ave-Dx	Ratio-Dx	Max-Dx/h	DxR/Dx	Ratio AX
	JIIIdXD	Hux-bx	AVC-DA	Nacio-DX	Hux-bx/II	DAILY DA	Nacio_AX
10	1 10000025	125.92	74.97	1.68	3300		
	1000005	3.27	2.70	1.21	1/1009	48.16%	1.00
9	1 9000025	122.65	72.27	1.70	3300		
	9000025	5.72	4.01	1.42	1/ 577	32.52%	1.14
8	1 8000005	116.94	68.26	1.71	3300		
	8000025	8.14	5.33	1.53	1/ 405	23.14%	1.32
7	1 7000005	108.79	62.92	1.73	3300		
	700005	10.43	6.58	1.59	1/ 316	17.24%	1.36
6	1 6000005	98.36	56.35	1.75	3300		
	6000025	12.57	7.72	1.63	1/ 263	13.04%	1.21
5	1 5000005	85.80	48.63	1.76	3300		
	5000005	14.54	8.73	1.67	1/ 227	9.70%	1.11
4	1 4000025	71.26	39.90	1.79	3300		
	4000005	16.34	9.59	1.70	1/ 202	6.71%	1.04
3	1 3000025	54.92	30.31	1.81	3300		
	3000025	17.93	10.24	1.75	1/ 184	3.53%	0.98
2	1 2000025	36.99	20.07	1.84	3300		
	2000005	19.22	10.62	1.81	1/ 172	11.06%	0.93
1	1 1000025	17.77	9.46	1.88	3300		
	1000025	17.77	9.46	1.88	1/ 186	100.00%	0.77
<u> </u>							
X 回 最 ブ	大楼层位移角: 1/44	17 (10层1塔	§)	•.			
X方回調	最大位移与层半均位移	的比值: 1.	.88 (1层14	≦) 			
X方内的	最大层间 <u>位移</u> 与平均层	间位移的比1目	: 1.88	(1)云1)合)			
	上況5 === +Y 万回风	荷载作用下的	楼层最大位移	,			
	上/況5 === +Y /万回)XQ	荷载作用下的	楼层最大位移	Ļ			
Floo	工次5===+Y 万回队	荷载作用下的 Max-(Y)	P楼层最大位移 Ave-(Y)	Ratio-(Y)	h		
=== Floo	工成5 === +Y 万回X r Tower Jmax JmaxD	荷载作用下的 Max-(Y) Max-Dy	楼层最大位利 Ave-(Y) Ave-Dy	Ratio-(Y) Ratio-Dy	h Max-Dy/h	DyR/Dy	Ratio_AY
Floo	工成5 === +Y 万回风 r Tower Jmax JmaxD	荷载作用下的 Max-(Y) Max-Dy	楼层最大位利 Ave-(Y) Ave-Dy	Ratio-(Y) Ratio-Dy	h Max-Dy/h	DyR/Dy	Ratio_AY
Floo	ר Tower Jmax JmaxD 1 10000001	荷载作用下的 Max-(Y) Max-Dy 111.13 2.00]楼层最大位利 Ave-(Y) Ave-Dy 102.92	Ratio-(Y) Ratio-Dy 1.08	h Max-Dy/h 3300	DyR/Dy	Ratio_AY
Floo	r Tower Jmax JmaxD 1 1000001 1000005	荷载作用下的 Max-(Y) Max-Dy 111.13 2.98 109 15	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 00.00	Ratio-(Y) Ratio-Dy 1.08 1.01	h Max-Dy/h 3300 1/1108	DyR/Dy 65.81%	Ratio_AY 1.00
Floo	r Tower Jmax JmaxD 1 10000001 10000005 1 9000001	荷载作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5 15	楼层最大位移 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4 88	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.08	h Max-Dy/h 3300 1/1108 3300 1/ 641	DyR/Dy 65.81%	Ratio_AY 1.00
Floo	r Tower Jmax JmaxD 1 10000001 10000005 1 9000005 1 9000005	荷载作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00	楼层最大位和 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300	DyR/Dy 65.81% 40.80%	Ratio_AY 1.00 1.28
Floo	r Tower Jmax JmaxD 1 10000001 10000005 1 9000005 1 9000005 1 8000005	荷载作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453	DyR/Dy 65.81% 40.80% 27.29%	Ratio_AY 1.00 1.28 1.46
=== Floo 10 9 8 7	r Tower Jmax JmaxD 1 10000001 10000005 1 9000005 1 9000005 1 8000005 1 8000005 1 7000005 1 7000005	荷载作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300	DyR/Dy 65.81% 40.80% 27.29%	Ratio_AY 1.00 1.28 1.46
=== Floo 10 9 8 7 	エ /元5 === +Y /j □jス r Tower Jmax 1 10000001 1 10000005 1 9000005 1 9000005 1 8000005 1 8000005 1 7000001 1 7000001	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.08	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355	DyR/Dy 65.81% 40.80% 27.29% 19.98%	Ratio_AY 1.00 1.28 1.46 1.49
=== Floo 10 9 8 7 6	r Tower Jmax JmaxD 1 10000001 10000005 1 9000005 1 9000005 1 8000005 1 8000005 1 8000005 1 7000001 7000001 1 6000005	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300	DyR/Dy 65.81% 40.80% 27.29% 19.98%	Ratio_AY 1.00 1.28 1.46 1.49
=== Floo 10 9 8 7 6	r Tower Jmax r Tower Jmax 1 10000001 1 10000005 1 9000005 1 9000005 1 8000005 1 8000005 1 7000001 7000001 1 6000005 6000005	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 295	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33%	Ratio_AY 1.00 1.28 1.46 1.49 1.28
=== Floo 10 9 8 7 6 5	r Tower Jmax r Tower Jmax 1 10000001 1 10000005 1 9000005 1 9000005 1 8000005 1 8000005 1 7000001 800005 1 7000001 1 6000005 1 5000005	荷载作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 295 3300	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33%	Ratio_AY 1.00 1.28 1.46 1.49 1.28
=== Floo 10 9 8 7 6 5	L/元5 === +Y 万円34 r Tower Jmax 1 10000001 1 10000001 1 10000005 1 9000005 1 8000005 1 7000001 1 6000005 1 6000005 1 5000005 1 5000001	荷載作用下的 Max(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 255	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16
=== Floo 10 9 8 7 6 5 4	L/元5 === +Y 万円JA r Tower Jmax 1 10000001 1 10000001 1 10000005 1 9000005 1 8000005 1 7000001 1 6000005 1 5000005 1 5000005 1 5000005 1 5000005 1 4000001	荷載作用下的 Max(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 255 3300 1/ 256 3300	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16
=== Floo 10 9 8 7 6 5 4 	r Tower Jmax 1 1000001 1 1000001 1 000001 1 9000001 1 9000001 1 9000001 1 9000001 1 8000005 1 8000005 1 7000001 1 6000005 1 5000005 1 5000001 1 4000001 1 4000001	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 255 3300 1/ 256 3300 1/ 228	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08
Floo 10 9 8 7 6 5 4 3	r Tower Jmax 1 1000001 1 1000001 1 0000001 1 0000005 1 9000005 1 9000005 1 8000005 1 8000005 1 7000001 1 6000005 1 5000005 1 5000005 1 5000005 1 4000005 1 3000001	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 47.86	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.11	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 255 3300 1/ 256 3300 1/ 228 3300	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08
Floo	r Tower Jmax 1 1000001 1 1000001 1 0000001 1 0000005 1 9000005 1 9000005 1 8000005 1 7000001 1 6000005 1 5000001 1 4000001 1 4000005 1 3000001 1 4000001 1 3000001	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 47.86 15.83	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.11 1.07	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 355 3300 1/ 255 3300 1/ 255 3300 1/ 228 3300 1/ 228	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03
Floo 10 9 8 7 6 5 4 1 3 2	⊥/元5 === +Y 万 □]X r Tower Jmax 1 1000001 JmaxD 1 10000001 10000001 1 10000005 9000005 1 9000005 9000005 1 8000005 10000005 1 8000005 10000005 1 7000001 10000005 1 6000005 10000005 1 5000001 10000005 1 3000005 10000005 1 3000005 10000005 1 2000001 10000005	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 47.86 15.83 32.03	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84 28.44	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.11 1.07 1.13	h Max-Dy/h 3300 1/1108 3300 1/641 3300 1/453 3300 1/255 3300 1/255 3300 1/255 3300 1/258 3300 1/228 3300	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03
Floo 10 9 8 7 6 7 6 5 4 4 3 2	L/X;5 === +Y)-[]JA r Tower Jmax 1 10000001 JmaxD 1 10000001 10000005 1 9000005 9000005 1 9000005 1000005 1 9000005 1000005 1 9000005 1000005 1 7000001 10000005 1 5000001 5000001 1 4000005 1000005 1 3000005 1000005 1 2000001 2000005	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 47.86 15.83 32.03 16.86	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84 28.44 15.73	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.11 1.07 1.13 1.07	h Max-Dy/h 3300 1/1108 3300 1/641 3300 1/453 3300 1/255 3300 1/255 3300 1/256 3300 1/228 3300 1/208 3300 1/208	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96% 19.35%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03 0.97
Floo 10 9 8 8 7 6 7 6 5 4 3 2 1	L/X;5 === +Y)-[]],0 r Tower Jmax 1 10000001 JmaxD 1 10000001 10000001 1 10000001 9000005 1 9000005 9000005 1 9000005 10000005 1 9000005 10000005 1 7000001 10000005 1 6000005 10000005 1 5000001 10000001 1 4000005 10000005 1 2000001 10000005 1 2000005 10000005 1 2000005 10000005 1 2000005 10000005 1 2000005 10000005	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 9.571 9.30 86.40 11.18 75.23 12.90 62.32 14.46 15.83 32.03 16.86 15.17	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84 28.44 15.73 12.71	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.11 1.07 1.13 1.07 1.19	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 255 3300 1/ 295 3300 1/ 256 3300 1/ 228 3300 1/ 228 3300 1/ 208 3300	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96% 19.35%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03 0.97
Floo Floo 10 9 10 9 10 10 9 10 10 10 10 10 10 10 10 10 10	L/X;5 === +Y f=ljA r Tower Jmax 1 10000001 1 10000001 1 10000001 1 10000001 1 9000005 1 9000005 1 9000005 1 8000005 1 7000001 1 6000005 1 5000005 1 5000005 1 5000005 1 4000005 1 3000001 1 2000005 1 2000005 1 2000005 1 2000005 1 2000005 1 2000005 1 000005 1 1000005 1 1000005 1 1000005	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 15.83 32.03 16.86 15.17 15.17	I楼层最大位和 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84 28.44 15.73 12.71 12.71	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.11 1.07 1.11 1.07 1.13 1.07 1.19 1.19	h Max-Dy/h 3300 1/1108 3300 1/641 3300 1/453 3300 1/255 3300 1/255 3300 1/256 3300 1/256 3300 1/228 3300 1/208 3300 1/196 3300 1/217	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96% 19.35% 100.00%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03 0.97 0.72
Floo 10 10 9 8 8 1 7 6 5 1 4 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	⊥/7;5 === +Y /j 9 ,4, r Tower Jmax 1 1000001 JmaxD 1 10000001 JmaxD 1 10000001 JmaxD 1 10000001 JmaxD 1 100000001 JmaxD 1 9000001 8000005 1 8000005 7000001 1 6000005 1 1 6000005 1 1 5000001 1 1 5000001 1 1 4000001 1 1 2000005 1 1 2000005 1 1 2000005 1 1 000005 1 1 000005 1 1 1000005 1 1 1000005 1	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 47.86 15.83 32.03 16.86 15.17 15.17	I楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84 28.44 15.73 12.71 12.71	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.10 1.07 1.11 1.07 1.13 1.07 1.19 1.19	h Max-Dy/h 3300 1/1108 3300 1/641 3300 1/453 3300 1/255 3300 1/255 3300 1/256 3300 1/256 3300 1/228 3300 1/208 3300 1/196 3300 1/217	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96% 19.35% 100.00%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03 0.97 0.72
Floo 10 9 8 8 7 6 5 1 4 3 2 1 1 VDB	<pre>L/元5 === +Y 方回A r Tower Jmax 1 10000001 1 10000005 1 9000005 1 8000005 1 8000005 1 7000001 1 6000005 1 6000005 1 5000001 1 4000001 1 4000001 1 3000005 1 3000005 1 2000005 1 1000005 1 1000005</pre>	荷載作用下的 Max-(Y) Max-Dy 111.13 2.98 108.15 5.15 103.00 7.29 95.71 9.30 86.40 11.18 75.23 12.90 62.32 14.46 47.86 15.83 32.03 16.86 15.17 15.17	楼层最大位利 Ave-(Y) Ave-Dy 102.92 2.94 99.98 4.88 95.10 6.88 88.22 8.75 79.47 10.50 68.96 12.11 56.85 13.57 43.28 14.84 28.44 15.73 12.71 12.71 12.71	Ratio-(Y) Ratio-Dy 1.08 1.01 1.08 1.06 1.08 1.06 1.08 1.06 1.09 1.06 1.09 1.07 1.10 1.07 1.10 1.07 1.11 1.07 1.13 1.07 1.19 1.19	h Max-Dy/h 3300 1/1108 3300 1/ 641 3300 1/ 453 3300 1/ 453 3300 1/ 255 3300 1/ 295 3300 1/ 256 3300 1/ 228 3300 1/ 208 3300 1/ 196 3300 1/ 217	DyR/Dy 65.81% 40.80% 27.29% 19.98% 15.33% 12.04% 9.36% 5.96% 19.35% 100.00%	Ratio_AY 1.00 1.28 1.46 1.49 1.28 1.16 1.08 1.03 0.97 0.72

表3 +X风			表5 +Y风			
层号	塔号	位移角	层号	塔号	位移角	
10	1	1/447	10	1	1/321	
9	1	1/418	9	1	1/297	
8	1	1/393	8	1	1/278	
7	1	1/373	7	1	1/262	
6	1	1/358	6	1	1/250	
5	1	1/345	5	1	1/240	
4	1	1/337	4	1	1/233	
3	1	1/333	3	1	1/229	
2	1	1/335	2	1	1/233	
1	1	1/356	1	1	1/260	
表4 -X风		表6 - Y风				
表4 -X风			表6 -Y风			
表4 -X风 层号	塔号	位移角	表6 -Y风 层号	塔号	位移角	
表4 - X风 层号 10	塔号	位移角 1/447	表6 -Y风 层号 10	塔号 1	位移角 1/321	
表4 -X风 层号 10 9	塔号 1 1	位移角 1/447 1/418	表6 -Y风 层号 10 9	塔号 1 1	位移角 1/321 1/297	
表4 -X风 层号 10 9 8	塔号 1 1	位移角 1/447 1/418 1/393	表6 -Y风 层号 10 9 8	塔号 1 1	位移角 1/321 1/297 1/278	
表4 - X风 层号 10 9 8 7	塔号 1 1 1 1	位移角 1/447 1/418 1/393 1/373	表6 -Y风 层号 10 9 8 7	塔号 1 1 1 1	位移角 1/321 1/297 1/278 1/262	
表4 - X风, 层号 10 9 8 7 6	塔号 1 1 1 1 1	位移角 1/447 1/418 1/393 1/373 1/358	表6 - Y风 层号 10 9 8 7 6	塔号 1 1 1 1 1 1	位移角 1/321 1/297 1/278 1/262 1/250	
表4 - X风, 层号 10 9 8 7 6 5	塔号 1 1 1 1 1 1 1	位移角 1/447 1/418 1/393 1/373 1/358 1/345	表6 -Y风 层号 10 9 8 7 6 5	塔号 1 1 1 1 1 1 1 1	位移角 1/321 1/297 1/278 1/262 1/250 1/240	
表4 - X风, 层号 10 9 8 7 6 5 4	塔号 1 1 1 1 1 1 1 1 1	位移角 1/447 1/418 1/393 1/373 1/358 1/345 1/337	表6 -Y风 层号 10 9 8 7 6 5 4	塔号 1 1 1 1 1 1 1 1 1 1	位移角 1/321 1/297 1/278 1/262 1/250 1/240 1/233	
表4X风 层号 10 9 8 7 6 5 4 3	塔号 1 1 1 1 1 1 1 1 1 1 1	位移角 1/447 1/418 1/393 1/373 1/358 1/345 1/337 1/333	表6 - Y风 层号 10 9 8 7 6 5 4 3	塔号 1 1 1 1 1 1 1 1 1 1 1	位移角 1/321 1/297 1/278 1/262 1/250 1/240 1/233 1/229	
表4 - X风, 层号 10 9 8 7 6 5 4 3 2	塔号 1 1 1 1 1 1 1 1 1 1 1 1 1	位移角 1/447 1/418 1/393 1/373 1/358 1/345 1/337 1/333 1/335	表6 -Y风 层号 10 9 8 7 6 5 4 3 2	塔号 1 1 1 1 1 1 1 1 1 1 1 1 1	位移角 1/321 1/297 1/278 1/262 1/250 1/240 1/233 1/229 1/233	

2.2 优化位移、振型动画的显示

位移、振型动画中增加 X、Y、Z 及合成分量的选项,并增加位移(相对位移)限值设置。

选择类别
●水平地震 ○竖向地震
选择振型
1(T=3.282)
2(T=3.079)
3(T=2.632)
4(T=0.945)
5(T=0.802)
6(T=0.757)
7(T=0.472)
8(T=0.384)
< >
远挥亚小 问即悛居
全楼模型 按属性选
构件信息
□强刚模型
变形幅值 5000.0
□ 预先录制,以加速显示
位移分量
○ Z向 ● 合成
位移限值
上限 이 聖
下限 💿 🕺

2.3 优化等值线中板的配筋结果显示

优化配筋分量中 X、Y 方向和角度的联动,使得图面上配筋结果的文字显示方向永远和设置的方向角度一致。

2.4 优化新广东高规下的参数默认设置

针对新广东高规中的规定,并且结合实际工程,将性能水准的默认值改为3,水平耗能构件重要性系数的默认值改为0.6。

YJKCAD-参数输入-地震信息 >	性能设计	×
结构总体信息 计算控制信息 上阶效应 分析求解参数 风荷载信息 基本参数 指定风荷载 地震信息 电定义影响系数曲线 地震作用放大系数	地震信息 > 性能设计 ✓ 考虑性能设计 地震水准 ● 中震 ○ 大震 选择大震不屈服设计时,软件将采用材料强度极限值设计 ○ 性能设计(抗规) 正截面 不屈服 → 斜截面 不屈服 → ○ 性能设计(ご 規) ● 性能设计(ご 規) ● 性能设计(ご 規) ● 性能改计(二 規) ● 性能改计(二 規) ● 性能改计(二 規) ● 世能改计(二 規) ● 世能改计(二 規) ● 世能改计(二 規)	
性說包紹设计 性說包紹设计 设计信息 活育價信息 构件设计信息 闷构件设计信息 闷构件设计信息 利料信息 材料信息 材料修改 间筋强度 地下空信息 有實細合石	构件重要性系数 关键构件系数 一般竖向构件系数 小平耗能构件系数 ① 考虑钢筋超强系数1.25 ② 按广东高规进行钢构件性能设计 一性能设计(《钢结构设计标准》(GB50017-2017))	
祖高系44 祖合表 自定义工児组合 登立加固 装配式	性能等级 4 延性等级 IV 耗能构件抗弯刚度ET折减系数 1 耗能构件轴向刚度EA折减系数 0.55 非耗能构件性能系数 0.55 非耗能构件内力调整系数 Pe 1.32	
导入导出	恢复默认 高级选项 确定	取消

2.5 优化活荷载不利布置的参数默认

对于活荷载不利布置参数的默认值,当结构层数小于等于8层时,取最高层数,当结构层数大 于8层时,取0。

"""林书公告		X
- 沽何報信息		
□ 按建模菜单 "房间属他	Ł"计算	
🗌 设计时折减柱、墙活花	術载	
柱、墙活荷载折瑊设置		楼面梁活荷载折瑊设置
计算截面以上层数	折瑊系数	◉不折瑊
1	1	○从属面积超过 25m2时,楼面活荷载折瑊O.9
2-3	0.85	○从属面积超过 50m2时,楼面活荷载折瑊O.9
	0.7	○ 单向板楼盖楼面活荷载折减0.6
4-5	0.1	○双向板楼盖楼面活荷载折减0.8
6-8	0.65	
9-20	0.6	活荷不利布置最高层号 5
20厚以上	0.55	梁活荷载内力放大系数 1
梁活荷载内力放大系数:		<u>^</u>
《 <mark>高規》5.1.8条規</mark> 定: " 裁不利布罢引起的结构内力	'高层建筑结构内力 的增大: 当整体计'	计算中,当楼面活荷载大于4kW/m2时,应考虑楼面活荷 Pa由去考虑楼面活荷载不到布罢时,应话当增大楼面深
FX41110000000000000000000000000000000000		异于小小5%7度间有195%119700000000000000000000000000000000000
恢复默认 高级选项		确定 取消

第三章 施工图

3.1 板施工图

3.1.1 读取 CAD 图功能改进

针对协同工具及工程校审软件的应用,对读 CAD 图功能进行了改进。当以插入衬图的形式进行 识别时,可以识别楼板平法图中的文字说明(获取说明中的填充样式并找到填充样式对应的楼板信 息及文字说明中未标注钢筋规格),自动根据图纸修改板厚,并可以自动判断图纸的绘图方式等。 但当前版本中在进行楼板钢筋识别时仍需要将各类钢筋按照图层进行准确划分,方能保证识别结果 的准确性。

3.2 梁施工图

3.2.1 增加参数控制与 200 厚墙相连梁的纵筋单排最大根数

3.1 版本中修改梁宽小于等于 200 且支座为小于等于 200 厚面内墙时,考虑施工时钢筋排布的 因素,程序内部在选筋时自动考虑单排最大纵筋根数为 2 根。鉴于不同设计人员的设计习惯,在 3.1.1 版本上增加控制参数,由用户控制是否自动执行,若不想在设计时控制单排的根数为 2,则取消该 参数的勾选即可,取消勾选后梁纵筋仅按照规范要求的纵筋间距进行控制。

	SMRJJ25RJ7-J25		_
梁名称前缀	用户自定义选筋时计算面积取设计结果配筋简图显示的数值(cm2)		
911	忽略屋面框架梁判断的楼层		
通用选筋参数	は 抗扭纵筋分配方式	 ●腰筋按构造配○ 按截面高宽比分配 ○完全由腰筋承担 	
	腰拉筋弯钩形式	⇒ ⇒	
	腰筋自动选筋时的间距容差(%)	5	
裂缝挠度相关	梁的腹板高度hw取值方法	hw=h0-hf ○ hw=h-hf	
	梁上部钢筋水平方向的最小净间距(mm)	30	
	梁下部钢筋水平方向的最小净间距(mm)	25	
框架梁选筋参	上部纵箭多于—排时优先按照最大单排根数排布		
数	梁宽度≤200mm且支座为厚度≤200mm的面内墙时单排配置2根纵向钢筋) 🔽	
600	实配钢筋面积与计算面积的容差(%)	0.5	
非框架梁选筋			
参数			~
	梁宽度≤200mm且支座为厚度≤200mm的面内墙时单排配置2根纵向钢	筋	
	对于截面宽度小于等于200mm的梁,当支座为面内墙支座且墙厚小于等于2	200mm时,考虑墙分布筋,方便施工,梁单排配置	i
墙连梁选筋参,	2根纵回钠筋。		
	r B		_

该参数的勾选状态除了会影响到选筋时的钢筋排布外,还会影响到校审时使用的钢筋间距。

3.2.2 修改梁施工图的偏拉标志输出格式

当梁的配筋是由大、小偏拉控制时,在上部计算结果中会直接输出 DPL、XPL 的标志,旧版本程 序中梁施工图标注偏拉时仅是标注的 PL,未区分大、小偏拉,针对 3.1 版本中上部的修改,同步修 改施工图中的显示形式,如下图所示:

3.2.3 读 CAD 图功能改进

根据最新的工程校审软件对图纸的识别功能进行改进,在梁施工图识别时可以支持对图纸说明 及梁表的识别,同时在识别 CAD 图纸时,在右侧屏幕菜单中增加了"校对截面"的功能,用来检查图 纸中的截面与模型中的构件截面是否一致,对于不一致的地方用红色字体进行提示。

3.3 柱施工图

3.3.1 完善跃层柱的数据

解决跃层柱平面绘制问题。

3.4 墙施工图

3.4.1 改进带有边框柱的边缘构件箍筋的绘制形式

在旧版本中当边框柱与墙身内外皮不对齐时,某些情况下的边缘构件箍筋绘制结果不符合实际 的设计习惯,经常出现箍筋未绘制到边的情况,所以在新版本中作出调整。

3.4.2 墙身筋编辑修改时支持两种规格的修改

为了适应墙施工图中识别 cad 图纸时用户图纸中墙身筋使用两种直径的情况,对墙施工图数据 进行调整,支持识别两种墙身规格的情况,同时在墙身筋编辑修改时,也支持对话框中两种钢筋规 格的输入,如下图所示:

编辑墙身集中标	ž ×
墙身名称	DWQ3
墙 厚	400
☑ 允许各排分	布筋直径间距不同
水平分布筋	C16@200/C18@600
水平筋(内皮)	C10@100
水平筋 (中间)	
竖向分布筋	C20@100
竖向筋(内皮)	C14@100
竖向筋(中间)	
内外皮指定	默认左手外皮 🛛 🗸
	非贯通筋>>
拉筋	A6@600
拉筋类型	双向 ~
分布筋排数	2

两种钢筋规格之间用"/"分隔,比如 C10/8@200,代表 C10@400+C8@400 隔一布一; C10@200/C8@600,代表 C10@200 每三层布两层,C8@200 每三层布一层;等等。

第四章 基础

4.1 全面支持新版广东《高层建筑混凝土结构技术规程》

v3.1.1 基础设计支持广东高规《高层建筑混凝土结构技术规程》DBJ 15-92-2021,使用时应注意以下 4 个方面:

(1)参数输入

打开【参数输入】对话框,在【性能设计】页面进行设置。根据广东高规,基础设计按中震考虑,可选择第1~4性能水准。

数输入-性能设计				
总参教 地基示载力计算参数 条基自动布雷参数 独基自动布雷参数 承台自动布雷参数 流台自动布雷参数 流行力,你最多数 征在筏板弹性地是梁计算参数(1 水浮力,105,荷载组合表	性能设计 ☑性能设计 依据规范 ○ 抗震规范	○全国高规 ●广东高规		
☆ 100 10 3 3 10 4 2 10 4 10 4	性能水准 ○1 ○2 ○3 ●4 ○5	地震水准 ○小震 ④中震 ○大震		
导入 导出			确定	取消

目前,基础软件仅支持按广东高规进行性能设计,暂不支持《抗震规范》和全国版"高规"。 (2)荷载组合

勾选性能设计或者性能水准时,会弹出【是否重设荷载组合】对话框。点击确定时,将同步修 改荷载组合表里的组合系数(基本组合下的地震系数)。

☑性能设i	+				44.
一伦据规记一	依据规范				<u></u>
○ 抗震规ジ	包 全国	国高规 ① 广东	高规	独基:	1
				地基梁:	1
一性能水准一		- 地震水准		桩基承台:	1
1 1		○小震		筏板:	1
02		◉ 中震		防水板:	0.7
Оз	to and				1
O 4	Jccad			^	1
05	4	是否更新荷	截组合表?		0. 7
		确定	取消	ij.	

荷载组合系数通过地震力折减系数 c 和广东高规《高层建筑混凝土结构技术规程》DBJ 15-92-2020 公式 3.9.5-1 综合考虑等效得到。

需要说明,这里的"荷载组合"仅指地震组合,表达式为:

$S_{\text{GEk}} + \eta c (S_{\text{Enk}}^* + 0.4S_{\text{Enk}}^*)$

式中, η 为构件重要性系数, 在构件设计阶段考虑, 不体现在荷载组合表中,

c为地震力折减系数,按下表取值:

地震性能水准	1	2	3	4
地震力折减系数 c	1	1	0.85	0.7

下图为性能水准 3 对应的荷载组合,水平 x 向地震的分项系数为 0.85,等于地震力折减系数 c; 竖向地震的分项系数为 0.34,等于 0.85×0.4。

F?	水浮力,	人防,荷载组合	法——										
	标准组	合 基本组合	准永	久组合			生成默	认组合	增	ו ד	删行	导入	导出
	序号	分析	恒载	活载	<u></u> Я, Х	<u></u> Я, У	震X	震Ψ	震Z	低水	高水		^
	13	线性	1.30	1.05		-1.50				—	—		
	14	线性	1.20	0.60			0.85		0.34	—	—		
	15	线性	1.20	0.60			-0.85		0.34	—	—		
	16	线性	1.20	0.60				0.85	0.34	—	—		- 11
	17	线性	1.20	0.60				-0.85	0.34	—	—		
	18	线性	1.20	0.60	0.30		0.85		0.34	—	—		
	19	线性	1.20	0.60		0.30		0.85	0.34	—	—		
	20	线性	1.20	0.60	-0.30		-0.85		0.34	—	—		
	21	线性	1.20	0.60		-0.30		-0.85	0.34	_	_		~

(3) 构件设计

执行广东高规性能设计要求时,与全国规范相比,基础设计的不同主要体现在地震作用上。

广东高规采用的是设防烈度,地震组合对应的受弯、受剪、冲切、局部受压承载力验算,都需 要考虑承载力利用系数 **ξ**。

1		J		
地震性能水准	1	2	3	4
压、剪(冲切)	0.6	0.67	0.74	0.83
弯、拉	0.69	0.77	0.87	1.0

η的取值规则已在"参数输入"章节说明, ξ取值如下表:

(4) 地基/桩承载力验算

执行广东高规性能设计要求时,与全国规范相比,地基承载力/桩验算的不同主要体现在地震作用上。

广东高规采用的是设防烈度, 地震组合对应的地基承载力验算, 抗震承载力调整系数 ζE 有所不同,

地震组合对应的桩承载力验算, Ra 的计算系数有所不同。

下表为软件采用的抗震承载力调整系数 ζΕ:

	广东高规	全国
fak>300kPa	1.9	1.5
150kPa <fak≪300kpa< td=""><td>1.6</td><td>1.3</td></fak≪300kpa<>	1.6	1.3
100kPa≤fak≤150kPa	1.4	1.1
fak≤100kPa	1.0	1.0

下表为软件执行的桩承载力验算公式:

		广东		全国
	轴心竖向力	偏心竖向力	轴心竖向力	偏心竖向力
竖向荷载组合	Qk≤Ra	Qk,max≤1.1R a	NK <p< th=""><th>Nk may<1 2P</th></p<>	Nk may<1 2P
竖向荷载与风组合	Qk≤1.2R a	Qk,max≤1.3R a	INC-IN	NR,110A-31.21
竖向荷载与设防烈度地震作用组 合	Qk≤1.6R a	Qk,max≤2.0R a	NEk≤1.25 R	NEk,max≤1.5 R

4.2 改进【柱墙均在轮廓内按规范简化算法计算】参数

柱(墙)均在构件轮廓内的多柱(墙)承台、独基按规范方法计算】参数用于控制多柱(墙)承台、 独基设计方法,对独立存在的、没有筏板连接的多柱(墙)承台、独基有效。勾选此项后,符合上 述条件的承台、独基按规范简化方法计算。

V3.1.0 及以前的版本,该参数有一个非常不方便的限值条件,该参数只对柱墙间距在 h0 以内的 情况起作用,如果柱墙相距较远,距离大于 h0,则这个参数不起作用。如下图,就是一种典型的情 况,只有两柱间距在 h0 以内,该参数才能生效,否则依然会按有限元的方式进行计算和设计。

≤h0 		
	≤h0 	

考虑到这个限值条件往往过于苛刻,导致这个参数对于很多情况下都不适用,因此在 v3.1.1 中, 程序完全放开了这一限制条件,只要柱墙在轮廓内,程序就会按外包轮廓的方式对该独基或承台进 行简化计算。

第五章 钢结构

5.1 压型钢板布置前处理自动读取肋间混凝土自重

当楼板布置为压型钢板组合楼板包括组合型和非组合型,之前版本在计算梁柱荷载时没有考虑 压型钢板肋间混凝土自重传导的荷载。

现在版本改进为,当"楼板荷载设置"中勾选"自动计算现浇板自重"时,程序自动考虑压型 钢板肋间混凝土自重进行荷载导荷;当不勾选"自动计算现浇板自重"时,程序不考虑压型钢板肋 间混凝土重量。

5.2 钢柱柱长系数计算不考虑悬挑梁线刚度

之前版本在钢柱柱长系数计算中自动考虑悬挑梁线刚度。

现在版本改进为,当前处理"连续梁编辑"功能识别为悬挑梁属性时,与悬挑梁连接的钢柱计 算柱长系数时不考虑悬挑梁线刚度。

5.3 增加抗剪连接件单侧边距

前处理-计算参数-钢构件设计信息项增加 "抗剪连接件单侧边距",用于自动根据钢梁上翼缘 生成抗剪连接件的外缘距,外缘距计算为钢梁宽度减去抗剪件单侧边距的2倍。

5.4 特殊梁铰接定义增加框选指定

特殊梁-"一端铰接"功能增加反框选指定功能,鼠标从下往上或从右往左框选梁构件进行铰接 属性定义。

特殊梁		门式刚梁 耗能梁 売元梁	•	 一端铰接 两端铰接 半铰接 两端固接 	•	刚度系数 扭矩折减 调幅系数 滑动支座	•	组合梁自动生成 组合梁全楼生成 组合梁设置 组合梁删除	•	设抗剪连接件 删抗剪连接件 组合梁翼板钢筋 删除翼板钢筋	•	杆端释放 删除释放 次梁自动较 实体构件
								关闭				
)-	- <u>#0-</u>	<u> </u>		: :			:© <u>∓</u> 0 ⊙∓0		=====		
		-										
			-ŷĦ	较接到	ŧځ	封框选持	旨	È				

5.5 组合梁自动生成增加手动选取功能

特殊梁-"组合梁自动生成"功能增加手动选取指定功能,鼠标左键选择需要自动设置组合梁信息的梁点击鼠标右键完成操作。

	刚度系数	•	组合梁自	动生成	•	设抗剪	连接件			
2	扭矩折减		组合梁全	楼生成		删抗剪	连接件			
特殊梁	调幅系数		组合梁设	置		组合梁	翼板钢筋			
-	滑动支座		组合梁删	除	•	删除翼	板钢筋			
			关闭							
	生成	×								
	□刪除已有组合梁数据									
			仅对次梁护	组合梁设	रेंगे	_				
		۲	本层全部	○手动	选取					
		_				1				
			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	即泊	肖					

5.6 组合梁翼板生成考虑区分 b1 和 b2

组合梁翼板 be 生成时考虑区分梁内外侧翼板计算宽度 b1、b2,并增加相关的交互。

	• 组合梁自动	1生成 。	设抗剪连接件
212/ 41 TH 375	• 组合梁全楼	注成 。	删抗剪连接件
将外業	 组合梁设置 		组合梁翼板钢筋
· · ·	• 组合梁删除	•	删除翼板钢筋

♥ 参数名	参数值	
▶ 砼翼板有效宽度be	0	
▋ 砼翼板外挑宽b1	0	
砼翼板外挑宽b2	0	7HL+64-2625-61-1100-62-1325
砼翼板厚度hc1	0	ZHE, DE, ZUZU DI, HIVU DZ, IJZU
板托高度hc2	0	hc1:100
板托顶部宽度	0 🗸	
砼翼板有效宽度 be 单位 ^(mm)	•	

5.7 组合梁翼板钢筋增加横筋设置

特殊梁-"组合梁翼板钢筋"功能增加板顶横筋、板底横筋设置,主要用于后续版本计算组合梁 纵向抗剪验算功能。

		。 组合梁自动生成	设抗剪连接件
	5	▫ 组合梁全楼生成	删抗剪连接件
	特殊梁	▪ 组合梁设置	组合梁興板钢筋
	-	▫ 组合梁删除	删除興板钢筋
×	参数名	参数值	
ю	板顶纵筋	C8@200	
ы	板底纵筋	C8@200	纵:C8@200+C8@200
	板顶横筋	C8@200	Ht. 000000, 000000
	板底橫筋	C8@200	棟:しる@200+しる@200
	垢而構築		
	田干组合梁约	从向抗剪验算	
		/(-12/035/02/1	

5.8 组合梁剪跨区段弯矩计算荷载组合读取参数中分项系数

组合梁抗剪连接件验算中,剪跨区段弯矩计算0组合为1.3恒+1.5活组合,现在版本程序自动 读取荷载组合系数中恒荷载分项系数和活荷载分项系数的修改。

5.9 组合梁增加施工阶段稳定验算

前处理-计算参数的"高级选项"中的梁参数增加组合梁施工阶段考虑稳定验算功能,程序默认 不勾选,勾选此参数后,对于组合梁施工阶段验算增加稳定验算在构件信息中以 F2 输出稳定结果。

	控制 正型 计算 参数	参数 月 梁 - 组合梁施工防 ▽ 组合梁施 □ 组合梁施)段验算 T阶段验算时 T阶段考虑稳	忽略轴力 定验算			
N-B=70 (I=1000049	T=1000049	导出 ·	恢复默认	高级选项			
N-D-79(1-1000048 Lbin=6.00(m) Lbou 组合梁 Q355 工字刑	, j=1000049 t=6.00(m) N 8 宽厚比等约	/(20/HN400X/ fb=5 Nfb_gz= 及S2 两端铰接	-5 Rsb=355	5			
施工阶段验算: -I- -M(kNm) 0 LoadCase (0) +M(kNm) 0 LoadCase (0) Shear 27 LoadCase (2) (2)Mx= 45.1 (2)Wx= 45.1 (2)V= -26.6 F	$\begin{array}{c} -1-\\ 0\\ (0)\\ 19\\ (2)\\ (2)\\ (2)\\ (2)\\ (1)\\ F1=\\ 40.5\\ F2=\\ 71.6\\ 3=\\ 8.88\end{array}$	$\begin{array}{cccc} -2- & -3- \\ 0 & 0 \\ 0) & (& 0) \\ 33 & 42 \\ 2) & (& 2) \\ 15 & 8 \\ 2) & (& 2) \\ 15 & 8 \\ 2) & (& 2) \\ 80 < f= & 30 \\ 21 < f= & 30 \\ 2 < f= & 175 \\$	-4- 0 (0) 45 (2) -0 (2) 05.000 05.000	-5- 0 42 (2) -8 (2)	-6- 0 33 (2) -15 (2)	-7- 0 (0) 19 (2) -23 (2)	-J- 0 (0) 0 (0) -27 (2)

5.10 钢结构施工图增加分层导入功能

钢结构导入参数中增加"分层导入"功能,程序根据设定的起始楼层号和终止楼层号进行部分 楼层的模型导入和钢结构节点设计及归并。

去掉"分层设计"菜单,用"分层导入"替换"分层设计"功能。

	钢结构	的施工图			_	
- 2 図层设置	读旧数据 号入参数 号入 考 す ち	算型 全局参数		人 节点设计]
	导入		节点设计		757200	4
	导入参数 分层导入 起始层号 1 <u>层</u> 终止层号 5 <u>层</u>	~]			

第六章 装配式

6.1 本层三维显示的差异

3.1.0版本在预制构件本层三维中单击某个预制构件,会显示出该构件内部的钢筋,如下图所示。

3.1.1 版本单击构件不再显示内部的钢筋,如下图所示。

平台反馈在单击时没有特意处理过透明,所以 3.1.1 版本单击构件时不显示内部钢筋并不是 bug, 后面的 4.0.0 版本在单击预制构件时平台会增加透明效果。

3.1.1 版本查看预制构件混凝土内部的钢筋,可在工作树中调整构件的混凝土透明度。程序支持 分级调整,可统一设置所有预制构件,也可按构件类别分别设置。

6.2 标准层与自然层预制构件属性的关系

3.1.1 版本在标准层下进行预制构件的拆分,拆分完成后预制属性会存储到标准层下的每一个自然层中。此时进行楼层复制、装配率统计、实配钢筋下的接缝验算可使用标准层下的任一自然层的预制属性。

第七章 弹性时程及弹塑性时程

7.1 弹性时程及弹塑性时程支持新广东高规反应谱

7.2 优化弹性时程及弹塑性时程中地震波与规范反应谱的对比图显示

第八章 接口程序

8.1 增加自动工程修复的功能

在进行 YJK 转其他软件操作时,如果模型本身需要工程修复,此时转换可能会导致程序崩溃。 软件增加自动工程修复的功能,在启动转换后,先进行工程修复,然后才开始进行模型转换,以避 免程序的不稳定。

8.2 对 L 形柱导入 ETABS、SAP2000 进行优化

YJK 中通过正负号来设置 L 形柱的两种分肢方向。而在 ETABS 及 SAP2000 中则是通过镜像来实现。 新版本通过优化导入 ETABS 和 SAP2000 的镜像的设置来实现 L 形柱子与 YJK 中一致。并且同时优化 了两种情况下构件转角的一致性。

8.3 3D3S 接口,完善了支座约束及杆端释放信息的导入