YJK 地铁车站设计 应用手册

北京盈建科软件股份有限公司

2016.05

日	콫
	~JK

-,	地铁车站建模	148
	1、整体模型	148
	2、各层模型	149
	3、相关信息设置	150
二、	计算前处理	150
	1、计算参数	150
	2、各层楼板均设置为弹性板 6	151
	3、查看前处理的计算简图	152
三,	计算结果查看	153
	1.墙的水平和竖向分布钢筋的计算结果	153
	2、等值线菜单下的内力和变形图	154
	3、等值线菜单下的内力剖面图	155
	4、使用整体云图功能显示内力和变形结果	156
四、	不需采用民用建筑控制指标时	157
五、	小结	158

一、地铁车站建模

1、整体模型

分 2 层建模, 第 1 层下布置筏板地基梁。各层层高为 6560、5750, 2 层都为地下室楼层。注意楼层表中各层底标高的设置。

楼层组装		-					X
组装项目和操作		组装结果					
复制层数 标准层号	层高(mm)	层号	层名	标准层	层高(mm)	层底标高(m)	
$\frac{1}{2}$ \wedge $\frac{1}{2}$	5750 👻	1	地下2层	1	6560	-16.7	
2 2 3 4	层名	2	地下1层	2	5750	-10, 14	
6	地下1层						
7 8 9	底标高 (m) -10.14						
10 11 12	☑ 自动计算 底标高						
13 E 14 E 15 E	增加(A) 修改(M)						
17 18 19	▲ 插入 (I)						
20	刪除(0)						
22 23	全刪 (R)						
24	自动命名						
26 27	标准层排序	地下室层数	敖 2 ▼	与基础相议	车构件的最大	大底标高(m) -1	6.000

2、各层模型

第1层,横轴线各跨为7250、6600、7250,纵向输入5跨,跨度11000。楼板厚400, 设置了楼板加腋,纵梁截面1000×1000,柱截面700×1100,横向梁高度取值和楼板厚 度相同。两边墙厚700。

1层楼板面荷载恒载19、活载5。

在第1层下布置筏板,厚度1000,板两侧设置了加腋。还布置了地基梁,中间纵梁

1400×2200,梁向上错层 1200。筏板上的面荷载为恒载 10、活载 20。

第2层,楼板厚800,设置了楼板加腋,纵梁截面1400×1600,梁向上错层800。横向梁高取和楼板厚度相同。

2层楼板面荷载恒载 62、活载 30。

3、相关信息设置

各层板厚、楼面恒活面荷载、混凝土强度等级、钢筋级别的设置如下表。

楼																		
	标准	标准 板厚	板厚	板厚	准 板厚	1 板厚 樹		楼面荷载			保护层厚度				主筋级别			
	层号	(mm)	恒	活	柱	梁	墙	板	支撑	柱	梁	板	墙	柱	梁	墙	板	柱
	1	400	19	5	50	35	50	35	25	20	20	15	15	HRB400 💌	HRB400	HRB400 💌	нрвзоо 💌	HRB400
	2	800	62	30	50	35	50	35	25	20	20	15	15	HRB400 💌	HRB400	HRB400 💌	нрвзоо 💌	HRB400

2 层均为地下室。

二、计算前处理

1、计算参数

注意地下室信息中的地下水位标高的填写,用来自动生成地下室外墙的水压力和底 板向上的水浮力。

结构总体信息	地下室信息	
计算控制信息	土层水平抗力系数的比例系数の値) 10
屈曲分析	扣除地面以下几层的回填土约束	0
风何孰信息 基本参数	外墙分布筋保护层厚度(mm)	35
指定风荷载	回值十容重 (kN/m3)	18
地震信息	口袋工口里 (44,000)	-0.35
也是人影响乐级曲线	至外地中か高の	0.5
性能设计 ハユ产白	回項主训违刀杀颈	0.5
^皮 F 信息 活荷载信息	地下水位标高(m)	4.39
构件设计信息 包络设计		0
材料信息	其础水工况组会方式: [3]	i≩tn →
的短度	∞₩₩//工////11/10/10	<u> </u>
何報知合	□m 的参考取值范围如下(单位: MN	/m^4):
组合系数	地基土类别	權注桩 预制桩
自定义工况组合 自定义工况组合 鉴定加固 装配式	1 淤泥、饱和湿陷性黄土: [2.5 2 松散、稍密填土: [6.0 3 中蜜填土: [14.0	$5\sim$ 6.0] [2.0~ 4.5] $5\sim$ 14.0] [4.5~ 6.0] $5\sim$ 35.0] [6.0~ 10.0]
	4 密头龙琪土: [35.0	Մ∼100.0၂ [10.0∼ 22.0]

2、各层楼板均设置为弹性板 6

为了算出车站顶板、壁墙、底板之间相互作用,应在前处理的板属性菜单中点取"全楼弹性板 6"菜单,将全楼的所有楼板设置为弹性板 6 (即按壳单元计算)。

对弹性板荷载计算方式要选择"有限元计算"方式。这种计算方式将把板的支座弯 矩传到墙上,使墙承受较大的面外弯矩,在板较厚时这种面外弯矩不行忽略。而传统的 导荷方式不能考虑这种面外弯矩,会使得墙肢面外弯矩比实际情况偏小,不利于结构安 全。

3、查看前处理的计算简图

生成计算数据后,使用轴测图菜单查看全楼的计算模型,并打开浮动窗口中的选项 "墙面外荷载"和"板面荷载",可以看到上面有用户输入的各层恒活面荷载、软件自动 生成的地下室外墙的土压力和水压力以及底板向上的水浮力。

软件对于设置了地基刚度的弹性板可自动施加向上的水浮力。

三、计算结果查看

除了一般的内力配筋计算结果之外,对于外墙和底板的有限元计算结果还可通过以 下方式查看和输出。

1. 墙的水平和竖向分布钢筋的计算结果

由于地铁站外墙受水压力和土压力这样的墙的面外荷载,设计的重点是墙的横向和 竖向分布钢筋。软件在配筋结果菜单下设置了"墙面外钢筋"菜单,对承受面外荷载的 墙输出分布钢筋的 12 个数值,适应墙分布筋内外侧不同、上下左右加密的布置状况。

对每片墙的两侧分别输出分布钢筋,H代表水平分布钢筋,给出上、中、下三个数 值;V代表竖向分布钢筋,给出左、中、右三个数值;

配筋结果文件给出这12个数值的详细计算过程。

N-WC=8 (I=100 Cover= 15(mm) 砼墙 外墙 加引 livec=1.000)0009 J=) aa=55(選区	=1000013) B*H*Lwc)(mm) Nfw=3 Nfw_g	(m)=0.70*11.00*6.56 z=3 Rcw=50.0 Fy=360	Fyv=270 Fyw=300 Rw
ηmu=1.000 '	η vu=1. 2	200 ηmd=1.000	η _{vd=1.200}	
(28)M= -8	313.2 V=	= 1166.2 λw=	0.067	
Nu= -7	7874.7 l	Jc=0.04		
(1)M=	0.2 N=	= -10157.1 As=	0.0	
(29)V= -45	541.5 N=	<u>= -42397.5 Ash=</u>	315.0 AshCal=	0.0 Rsh= 0.30
面外设计结果((毎延米り	单侧计算配筋面积)	:	
Left-Up: ((O)M=	0.0 N=	0.0 As=0(mm2)	
Left-Mid: ((1)M=	-325.1 N=	-0.0 As=1631(mm2)	
Left-Dw: ((O)M=	0.0 N=	0.0 As=0(mm2)	
Right-Up: ((1)M=	358.2 N=	-0.0 As=1800(mm2)	
Right-Mid: ((1)M=	577.5 N=	−0.0 As=2935(mm2)	
Right-Dw: ((1)M=	1295.9 N=	−0.0 As=6851(mm2)	
Left-Left: ((1)M=	-81.6 N=	−0.0 As=404(mm2)	
Left-Mid: ((1)M=	-82.2 N=	−0.0 As=407(mm2)	
Left-Right: ((1)M=	-81.5 N=	−0.0 As=404(mm2)	
Right-Left: ((1)M=	134.1 N=	-0.0 As=666(mm2)	
Right-Mid: ((1)M=	323.7 N=	–0.0 As=1624(mm2)	
Right-Right:((1)M=	134.4 N=	–0.0 As=668(mm2)	
抗則承载力: 🏻	VS_XF=	11674.48 WS_YF=	0.00	•

2、等值线菜单下的内力和变形图

可查看楼板和外墙各工况以及组合的内力和位移。

3、等值线菜单下的内力剖面图

使用切割线菜单,用户可对计算模型画出需要的剖面,可即时画出楼板和外墙各工 况以及组合的弯矩和剪力图。

4、使用整体云图功能显示内力和变形结果

软件计算以后同时输出了可用整体云图菜单显示的有限元结果,其后缀为.vtk。

四、不需采用民用建筑控制指标时

如果用户不想考虑民用建筑中的薄弱层调整、剪重比调整、0.2V0 调整时,可不勾选 以下参数。

对于结构体系的选择:如果需要考虑工业厂房中的长细比,宽厚比,请选择单层工

业厂房,或多层工业厂房;如果不考虑工业厂房中的长细比,宽厚比,请选择框架结构。

五、小结

对地铁车站底板按基础筏板输入,对各层设置为弹性板 6,这种全有限元模式可算出 车站顶板、壁墙、底板之间相互作用;

通过地下室参数定义可自动生成外部的土压力和地下水压力,地下水压力中对底板 向上的水浮力也自动生成;

也可将外部的土压力和地下水压力当作自定义荷载工况输入,以便控制多个荷载之间的不利布置;

可对地铁车站以及上的各种附属建筑按照多层的分层建模方式搭建,适应结构复杂 车站的设计;

计算结果中,除了内力、位移、配筋结果按常规方式查看外,还可使用等值线菜单的 "整体云图"菜单查看地铁整体在各个荷载工况下的变形和内力云图;使用"切割线" 功能可得到车站任意剖面的弯矩剪力图;

由于地铁站外墙受水压力和土压力这样的墙的面外荷载,设计的重点是墙的横向和 竖向分布钢筋。软件在配筋结果菜单下设置了"墙面外钢筋"菜单,对承受面外荷载的 墙输出分布钢筋的 12 个数值,适应墙分布筋内外侧不同、上下左右加密的布置状况。

可进行抗震计算中池水的动水压力和动土压力计算;

在基础软件中对车站基础作补充设计。

YJK 考虑石化框架设备的 计算

应用手册

北京盈建科软件股份有限公司

2016.05

-,	石化设备的建模	.162
二、	石化设备的布置参数	.163
三,	立式设备转成结构壳元参与整体结构计算	.164
	1、立式设备布置参数	.164
	2、立式设备将被转化成广义层的多塔结构	.165
	3、立式设备计算体系	.166
	4、设备层下自动生成传力给框架的转换梁	.170
	5、立式设备可变截面	.171
四、	卧式设备力学计算模型	.172
五、	镂空框架的风荷载计算	.173
六、	工程实例	.175
	1、43086	.175
	2、34133	.176
	3、41105	.178
	4、43098	.178
	5 07050	470

一、石化设备的建模

可在建模中输入石油化工框架上的设备,软件可以自动生成作用在设备上的风荷载 及地震作用,并将这些作用通过设备支座传导到框架上,软件并把立式设备转成结构壳 元参与整体计算。

二、石化设备的布置参数

建模的构件布置项下设置了"石化设备"菜单,用户定义设备类型及参数,并布置 到设备支座所处的楼层框架上。设备类型分为立式设备、卧式设备、空冷设备三种。设 备按房间布置,可以由用户定义设备中心距房间角点的距离,也可自动布置在房间的中 心位置。例如鼠标寻找到某个房间后,设备自动布置到该房间的中心位置,并自动该房 间的四个角点作为设备支座,设备传来的风荷载及地震作用就传导到该四个角点上。

立式设备	
类型	●式设备
设备名称	贮料罐
设备直径D(m)	2.5
设备长度L(m)	6 T T T T T T T T T T T T T T T T T T T
支座沿设备长度方向的支座间距	4.5 ada
设备沿设备长度直径的支座间距	2
支座高度H1 (m)	1.1
设备中心离平台高度H2 (m)	2.35
设备X向风荷载调整系数	
设备Y向风荷载调整系数	1
恒载(KN)	1001 卧式设备参数
活载(101)	260
	确定 取消

对定义好的设备按照房间进行布置,布置参数是相对于房间角点的偏移和转角,如 果勾选布置框上的"设备形心与楼板形心重合"项,则设备自动布置在房间的形心位置。

石化设备布置参数						
沿轴偏心 (mm)	0					
偏轴偏心(mm)	0					
轴转角(度)	0					
🔲 设备形心与楼板形心重合						

设备荷载作为节点荷载将自动传到设备所在房间的角点,也就是说软件自动将设备 支座放到房间的角点,目前还不支持人工自定义设备传力点,还不能将设备荷载作为梁 间荷载处理,因此当房间角点作为设备荷载传力点误差过大时,可通过布置次梁使房间 角点接近设备支座的位置。

立式设备	and	×
类型	空冷设备 🔻	
设备名称	空冷器1	
空冷器长a1(m)	5	
空冷器长s2(m)	5	4
折算挡风面高h1 (m)	3	+ + +
空冷器宽b(m)	5	
空冷器构架高度h(m)	3	
设备X向风荷载调整系数	1	
设备I向风荷载调整系数	1	* CITCIACITICE
恒载(1611)	500	_ <u>t</u> _
活载(1017)	200	
空冷设备	参数	确定取消

三、立式设备转成结构壳元参与整体结构计算

1、立式设备布置参数

软件将自动把立式设备转成广义层的多层结构,每层由钢剪力墙圆弧墙组成。立式

设备输入参数主要有:设备直径、高度、壁厚度、恒活载;可以设置立式设备为上下2 阶,每阶直径不同;设备还可从布置的平台往下探,设置了下探高度;还输入每阶划分 层数,即把立式设备转换成几层(默认4层)。

2、立式设备将被转化成广义层的多塔结构

立式设备将被转化成广义层的多塔结构,其中每个立式设备转化成几层(4 层)的塔 结构,该塔与原有楼层形成广义层的多塔结构。如图 4 个立式设备形成 4 个塔,每塔有 4 层,1-7 层为原有框架结构,从层号看是广义层的多塔。

数	标准层号	层高(mm)	层型		标准层	【 层高(mm)	层底标高(m)	
•	1	5750 👻	6			6000	25.5	
	3	尼点	7	8-93巨为/	^ ⊨	4000	31.5	
	4	库伯	8	0 20/2/91	. 8	5750	8.6	
	6		9	按广义层多	塔	5750	14.35	
	7	広告する	10	去罢的 继 日	÷ ا	5750	20.1	
	8	版物高 切)	11	甲 旦的医用	5 8	5750	25.85	
	10	25.85	12			5750	8.6	
	11	🕡 自动计算	13			5750	14.35	
-		- 底称高	14			5750	20.1	
=			15		19	5750	25.85	
	母/	下坟备1个	16		10	5750	8.6	
	II -	标准官	17		10	5750	14.35	
	II '	你谁広	18		10	5750	20.1	
			19		10	5750	25.85	
		- 刪除(10)	20		11	5750	8.6	
		全刪(33)	21		11	5750	14.35	
		±001 (m)	22		11	5750	20.1	
		自动命名	23		11	5750	25.85	
		标准层排序	地下室	层数 0 ▼	与基础相		大底标高(m) 0.	000

从楼层组装表可以看出,1-7 层为原有的框架结构,布置了立式设备后自动增加到23 层,增加了4个标准层,即每个立式设备由1个标准层组成,并被组装成4层的一个塔, 4个设备被组装成广义层的4个塔。

8-11 标准层为立式设备转成的标准层,可见他由钢板墙组成,设备参数的恒活荷载转成了1 恒活均布荷载。

如果设备上还需输入其他的荷载,可由相关恒活菜单继续输入,如果新的荷载只需 布置在4层中的某一层,还需用户进行标准层的复制以增加新的标准层。

3、立式设备计算体系

由于立式设备转成了多塔楼层,并且是广义层,就形成了一种新的计算体系。

虽然竖向设备常被包含在框架内,但在风荷载和地震作用的计算中,每个设备都单独计算各自的风荷载和地震作用,在计算风荷载时仅根据设备外径和高度计算风压,不 考虑框架的相关影响,计算地震作用时仅考虑设备本身的重力代表值质量和位置,也不 考虑框架的相关影响。广义层的建模方式就可以实现这样的框架和设备各自计算自己的 风荷载和地震作用。

立式设备的总的风荷载和地震作用将自动传导到设备底部的框架层,而框架部分的 风荷载和地震计算时仅考虑框架本身各层的情况,没有考虑设备的影响。

为了避免这种机制下风荷载的重复计算,计算参数风荷载要选择按构件挡风面积计算,这样框架本身和其中的设备都将按照各自的挡风面积计算。

结构总体信息	结构总体信息								
计算控制信息 控制信息	结构体系	吉构体系 框架结构		恒活	荷载计算信息	[施工模拟一			
屈曲分析 风荷载信息	结构材料	钢筋混凝土	-	风荷]载计算信息	按构件挡风面积计算 ▼			
基本参数 指定风荷载	结构所在地区	全国	•	地震	能用计算信息	计算水平地震作用 ▼			
地震信息	地下室层数			🗖 ì	+算吊车荷载	🔲 计算人防荷载			
自定义影响系数曲线	英国連筋カ屋具(同			t 📃	── 考虑预应力等效荷载工况				
也最作用放入系数	8월일3월9111월 등 영문				上成传给基础的刚 ────────────────────────────────────				
设计信息 活荷载信息	与基础相连构件最大	大底标高(m)	U	2010年10月10日 3 2部楼层) 3					
构件设计信息 包络设计	裙房层数	裙房层数							
材料信息	息 参数 转换层所在层号 强度 加强度 加强度 加强度		0		E队法寺值线用数 +省温度荷载	括			
钢筋强度					考虑收缩徐变的	☆ 构件 □.3			
12日本 11日本 11日本 11日本 11日本 11日本 11日本 11日本				_ 温度效应折减系统 图向荷载下砼墙轴	数				
1111日余数 1111日定义组合	底框层数		0		墙刚度折减系数	0.6			
自定义工况组合 鉴定加固	施工模拟加载层步	£	1						
装配式	施工模拟一和三采用 自动生成的加载顺序	顺序。 属性->指定施							
	工次序"节修改。								

在计算参数的控制信息应勾选自动划分多塔,因为是按照广义层的多塔结构计算。

由于设备已经成为由钢板墙组成的楼层结构,结构计算中自动按照剪力墙壳单元计算。在计算简图中可见4个设备转成按壳元计算的钢板墙结构

计算完成后在计算结果的 Wmass.out 中查看各层风荷载,可见各设备塔风荷载均独 立计算,未考虑之间的遮挡关系。

层号	塔号	风荷载X	剪力X	倾覆弯矩X	风荷载Y	剪力Y	倾覆弯矩Ⅴ		
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2	1 1 1 2 2 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5	$\begin{array}{c} 9.6\\ 8.8\\ 7.9\\ 7.0\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 1.1\\ 0.1\\ 6.4\\ 10.1$	$\begin{array}{c} 9.\ 6\\ 18.\ 4\\ 26.\ 4\\ 33.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 0.\ 6\\ 21.\ 7\\ 31.\ 8\\ 38.\ 3\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 55.\ 4\\ 161.\ 4\\ 313.\ 1\\ 504.\ 9\\ 57.\ 7\\ 167.\ 6\\ 324.\ 4\\ 522.\ 1\\ 57.\ 7\\ 167.\ 6\\ 324.\ 4\\ 522.\ 1\\ 57.\ 7\\ 167.\ 6\\ 324.\ 4\\ 522.\ 1\\ 57.\ 7\\ 167.\ 6\\ 324.\ 4\\ 522.\ 1\\ 38.\ 5\\ 168.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 264.\ 9\\ 264.\ 4\\ 379.\ 3\\ 68.\ 9\\ 266.\ 8\\ 376.\ 8$	$\begin{array}{c} 9.6\\ 8.8\\ 7.9\\ 7.0\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 9.1\\ 8.1\\ 7.1\\ 10.0\\ 10.$	$\begin{array}{c} 9.\ 6\\ 18.\ 4\\ 26.\ 4\\ 33.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 19.\ 1\\ 27.\ 3\\ 34.\ 4\\ 10.\ 0\\ 29.\ 9\\ 44.\ 2\\ 50.\ 6\\ \end{array}$	$\begin{array}{c} 55.4\\ 161.4\\ 313.1\\ 504.9\\ 57.7\\ 167.6\\ 324.4\\ 522.1\\ 57.7\\ 167.6\\ 324.4\\ 522.1\\ 57.7\\ 167.6\\ 324.4\\ 522.1\\ 57.7\\ 167.6\\ 324.4\\ 522.1\\ 71.8\\ 251.0\\ 383.6\\ 535.5\\ 555.5\end{array}$		
2 1	5 1	11.0 11.4 54.4	61.3 252.3	990.8 5231.6	14.8 61.3	80.8 278.7	1342.5 5810.8		

在 Wzq.out 文件中可见设备各层的地震作用。

各层 Y Floor Tower Fy Vy My Static	方向的信号 	J (CQC) 電作用下结构的 電作用下结构的 電作用下结构的 平台的地震力	9地震反应力 9楼层剪力 9弯矩		
Floor	Tower	Fy (kN)	Vy(分塔剪重比) (kN)	My (kN-m)	Static Fy (kN)
23	1	84.25	84.25(4.176%)	484.41	52.57
22	1	67.32	151.56(3.756%)	1355.85	43.01
21	1	50.52	202.03(3.338%)	2517.41	33.44
20	1	34.11	235.94(2.924%)	3873.79	23.87
19	2	69.80	69.80(3.460%)	401.34	52.57
18	2	56.58	126.36(3.132%)	1127.90	43.01
17	2	43.52	169.81(2.806%)	2104.14	33.44
16	2	30.90	200.42(2.484%)	3256.11	23.87
15	3	70.41	70.41(3.490%)	404.83	52.57
14	3	57.23	127.62(3.163%)	1138.62	43.01
13	3	44.20	171.75(2.838%)	2126.05	33.44
12	3	31.59	203.09(2.517%)	3293.37	23.87
11	4	93.73	93.73(4.646%)	538.93	52.57
10	4	74.81	168.53(4.177%)	1507.95	43.01
9	4	56.05	224.51(3.710%)	2798.79	33.44
8	4	37.74	262.00(3.247%)	4304.95	23.87
7	5	74.41	74.41(2.424%)	297.64	89.87
6	5	17.15	84.59(2.181%)	802.36	21.01
5	5	21.66	98.08(1.802%)	1091.88	32.88
4	5	6.88	101.69(1.724%)	1391.98	8.44
3	5	22.73	110.84(1.478%)	1922.89	25.74
2	5	20.96	117.75(1.292%)	2573.70	19.35
1	1	284.19	1165.65(1.649%)	23793.25	207.77

在等值线菜单下的整体云图菜单,可见竖向设备随同框架的整体变形。

4、设备层下自动生成传力给框架的转换梁

立式设备建模时,在立式设备转成楼层的同时,自动在设备下生成传力给框架的圆 弧形转换梁;转换梁在框架层生成,转换梁与框架梁之间自动生成连接梁;可人工修改 连接梁,以便进一步控制设备在框架上的受力点。

注意设备转换梁和框架梁之间的联系梁是软件自动生成的。可人工修改连接梁控制设备在框架上的受力点。

5、立式设备可变截面

对立式设备可输入上下两段不同直径的部分; 立式设备与框架相接部分可以下延一部分;

四、卧式设备力学计算模型

在生成计算数据时,软件将卧式设备自动转化为四根杆件,杆件下方是设备支座点, 上方汇聚于一点,上方点是用户定义设备时输入的点。

卧式设备的恒载、活载都作用在这点上。设备风荷载总值是软件根据设备的挡风面 算出的,也作用在这点上。地震计算时,设备的重力荷载代表值作用于这点,也就是说, 设备的地震作用也加到这一点上。 模拟石化设备的四根杆件在计算结果并不输出,他们的作用是将各荷载工况产生的 力传到杆件下方的支座处,传到设备所在层的框架上。

可以看出,卧式设备的计算方式和立式设备不同,卧式设备简化成四根杆件,且不 在计算结果显示,立式设备转化成壳单元成为整个结构体系的一部分;卧式设备的杆件 直接和设备层关联,立式设备转换成多个楼层的广义层结构;在地震计算上,每个卧式 设备质量集中在一个节点上,而立式设备的质量分布在多个由立式设备转化的楼层上。

五、镂空框架的风荷载计算

考虑到有些工业厂房框架需要框架构件的挡风面积计算风荷载,而不是按照一般的 框架外围的迎风面计算风载。比如软件已经对框架上的设备计算了风荷载后,再按照框 架外围作为迎风面计算风荷载就将造成风荷载的重复计算。

为此软件在风荷载计算信息中增加了"按构件挡风面积计算"的新的风荷载计算方 式。这种方式下软件对迎风方向上的每根构件按照它的截面尺寸计算风荷载,生成每根 构件上的均布风荷载,不区分构件的前后遮挡关系。

由程序自动计算框架上的设备风荷载常常和按构件挡风面积计算风荷载配合使用。

在计算前处理的风荷载下可以查看按照构件挡风面积计算风荷载的结果。先点自动 计算菜单生成各个风向的风荷载,图示为+X向风荷载的结果。

按照构件挡风面积计算风荷载后,软件对迎风方向上的每根构件按照它的截面尺寸 计算风荷载,并以杆件均布荷载的方式加到每根构件上。从上图可见每根构件上都注明 了该构件的均布风荷载值。

在图中设备所在处标注的 FX、FY 为设备承受的风荷载总值。

点屏幕右下的三维方式菜单,可以通过轴测计算简图的方式查看构件风荷载,如上 图为Y向风荷载的分布状况。

六、工程实例

组装项目和操作		组装结果				普通柜如目											
复制层数 标准层号 _ 层高(mm)			医号 医名 标准层 」		日地把木広												
1	*	1	3750 👻		1		1	5500	0								
3 3	3			2		2	550	5.5									
4	4 4	4	左右		3		3	5500	11								
6		6			4		4	5000	16.5								
Ť		7	成長真ない		5		5	3500	21.5								
8		8	馬标高 いり		6		6	7000	25								
10		9	16.75		7		7	5000	5.5								
11			☑ 自动计算 底标高		8		7	5000	10.5	Ξ							
12					9		7	5000	15.5								
14	=		增加(4)		10		7	5000	20.5								
15	15				11		8	5000	5.5								
16 17 18 19 20					12		8	5000	10.5								
		「抵してい」		13		8	5000	15.5									
			14	8	5000	20.5											
											- 刪除(10)		15		9	3750	5.5
22															16		9
23			王朝の		17		9	3750	13								
24			自动命名 标准层排序 :		18		9	3750	16.75	Ŧ							
25 26 27					下室层数	汝 ○ ▼	与基础相连	构件的最大属	〔 								
28	Ŧ				组装的	标准层太多时用单约	搁显示	6 确定	(Y) 取消(C)							

3、41105

上下变径立式设备,下探1500。

